RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts.

      한글로보기

      https://www.riss.kr/link?id=A107657052

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>In order to further our understanding of the influence of chemical components and ultimately specific sources of atmospheric particulate matter (PM) on pro-inflammatory and other adverse cellular responses, we promulgate and apply a suite of ...

      <P>In order to further our understanding of the influence of chemical components and ultimately specific sources of atmospheric particulate matter (PM) on pro-inflammatory and other adverse cellular responses, we promulgate and apply a suite of chemical fractionation tools to aqueous aerosol extracts of PM samples for analysis in toxicity assays. We illustrate the approach with a study that used water extracts of quasi-ultrafine PM (PM0.25) collected in the Los Angeles Basin. Filtered PM extracts were fractionated using Chelex, a weak anion exchanger diethylaminoethyl (DEAE), a strong anion exchanger (SAX), and a hydrophobic C18 resin, as well as by desferrioxamine (DFO) complexation that binds iron. The fractionated extracts were then analyzed using high-resolution sector field inductively coupled plasma mass spectrometry (SF-ICPMS) to determine elemental composition. Cellular responses to the fractionated extracts were probed in an in vitro rat alveolar macrophages model with measurement of reactive oxygen species (ROS) production and the cytokine tumor necrosis factor-α (TNF-α). The DFO treatment that chelates iron was very effective at reducing the cellular ROS activity but had only a small impact on the TNF-α production. In contrast, the hydrophobic C18 resin treatment had a small impact on the cellular ROS activity but significantly reduced the TNF-α production. The use of statistical methods to integrate the results across all treatments led to the conclusion that sufficient iron must be present to participate in the chemistry needed for ROS activity, but the amount of ROS activity is not proportional to the iron solution concentration. ROS activity was found to be most related to cationic mono- and divalent metals (i.e., Mn and Ni) and oxyanions (i.e., Mo and V). Although the TNF-α production was not significantly affected by the chelexation of iron, it was greatly impacted by the removal of organics with the C18 resin and all other metal removal methods, suggesting that iron is not a critical pathway leading to TNF-α production, but a wide range of soluble metals and organic compounds in particulate matter play a role. Although the results are specific to the Los Angeles Basin, where the samples used in the study were collected, the method employed in the study can be widely employed to study the role of components of particulate matter in in vitro or in vivo assays.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼