RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Metabolic engineering of<i>Escherichia coli</i>for the production of phenol from glucose

      한글로보기

      https://www.riss.kr/link?id=A107488893

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Phenol is an industrially versatile commodity chemical and is currently produced from fossil resources. Phenol's biological production from renewable resources has been limited due to its toxicity to microorganisms. Here, we simultaneously engineered ...

      Phenol is an industrially versatile commodity chemical and is currently produced from fossil resources. Phenol's biological production from renewable resources has been limited due to its toxicity to microorganisms. Here, we simultaneously engineered 18 Escherichia coli strains for the production of phenol using synthetic regulatory small RNA (sRNA) technology. sRNA-based knock-down of the two regulators and overexpression of the genes involved in the tyrosine biosynthetic pathway together with tyrosine phenol-lyase (TPL) in E. coli strains resulted in the production of phenol from glucose. The 18 engineered E. coli strains showed significant differences in the production of tyrosine (i.e. the immediate precursor for phenol), TPL activity, and tolerance to phenol. Among the engineered E. coli strains, the BL21 strain produced phenol most efficiently: 419 mg/L by flask culture and 1.69 g/L by fed-batch culture. The final titer and productivity were further improved through biphasic fed-batch fermentation using glycerol tributyrate as an extractant of phenol. The concentration of phenol in the glycerol tributyrate phase and fermentation broth reached 9.84 and 0.3 g/L, respectively, in 21 hours, which translates into the final phenol titer and productivity of 3.79 g/L and 0.18 g/L/h, respectively. This is the highest titer achieved by microbial fermentation. Although further engineering is required to be competitive with the current petro-based process, the strategies used for the development of the engineered strain and fermentation process will provide a valuable framework for the microbial production of toxic chemicals.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼