RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      개질된 표면을 이용한 풀비등 임계열유속 증진에 관련한 실험적 연구

      한글로보기

      https://www.riss.kr/link?id=A76557246

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of resear...

      In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of researches about enormous CHF enhancement with the nanofluids. In that, the pool boiling CHF in nanofluids has the significantly increased value compared to that in pure water because of the deposition of the nanoparticle on the heater surface in the nanofluids. The aim of this study is the comparison of the effect of the nanoparticle deposited surface and the modified surface which has the similar morphology and made by MEMS fabrication. The nanoparticle deposited surface has the complex structures in nano-micro scale. Therefore, we fabricated the surfaces which has the similar wettability and coated with the micro size post and nano structure. The experiment is performed in 3 cases : the bare surface with 0.002% water-ZnO nanofluids, the nanoparticle deposited surface with pure water and the new fabricated surface with pure water. The contact angle, a representative parameter of the wettability, of the all 3 cases has the similar value about 0 and the SEM(scanning electron microscope) images of the surfaces show the complex nano-micro structure. From the pool boiling experiment of the each case, the nanoparticle deposited surface with pure water and the fabricated surface with pure water has the almost same CHF value. In other words, the CHF enhancement of the nanoparticle deposited surface is the surface effect. It also shows that the new fabricated surface follows the nanoparticle deposited surface well.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 풀 비등 실험
      • 3. 실험결과 및 토의
      • 4. 결론
      • Abstract
      • 1. 서론
      • 2. 풀 비등 실험
      • 3. 실험결과 및 토의
      • 4. 결론
      • 후기
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 Costello, C. P., "The Roles of Capillary Wicking and Surface Deposits in the Attainment of High Pool Boiling Burnout Heat Fluxes" 10 (10): 393-398, 1965

      2 Golobic, I., "The Role of Enhanced Coated Surface in Pool Boiling CHF in FC- 72" 36 (36): 525-531, 2000

      3 Dinh, T. N., "The Micro- Hydrodynamics that Govern Critical Heat Flux in Pool Boiling" 2007

      4 Xue, H. S., "The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two- Phase Closed Thermosyphon" 100 : 104909-, 2006

      5 Kim, S. J., "Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux" 50 : 4105-4116, 2007

      6 Roy Chowdhury, S. K., "Surface Effects in Pool Boiling" 28 (28): 1881-1889, 1985

      7 Liter, S. G., "Pool-boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment" 44 : 4278-4311, 2001

      8 Takata, Y., "Pool Boiling on a Superhydrophilic Surface" 27 : 111-119, 2003

      9 Moreno, Jr. G., "Pool Boiling Heat Transfer of Alumina- Water, Zinc Oxide-Water and Alumina–Water + Ethylene Glycol Nanofluids" 2005

      10 Vassalo, P., "Pool Boiling Heat Transfer Experiments in Silica– Water Nano-Fluids" 47 : 407-411, 2004

      1 Costello, C. P., "The Roles of Capillary Wicking and Surface Deposits in the Attainment of High Pool Boiling Burnout Heat Fluxes" 10 (10): 393-398, 1965

      2 Golobic, I., "The Role of Enhanced Coated Surface in Pool Boiling CHF in FC- 72" 36 (36): 525-531, 2000

      3 Dinh, T. N., "The Micro- Hydrodynamics that Govern Critical Heat Flux in Pool Boiling" 2007

      4 Xue, H. S., "The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two- Phase Closed Thermosyphon" 100 : 104909-, 2006

      5 Kim, S. J., "Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux" 50 : 4105-4116, 2007

      6 Roy Chowdhury, S. K., "Surface Effects in Pool Boiling" 28 (28): 1881-1889, 1985

      7 Liter, S. G., "Pool-boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment" 44 : 4278-4311, 2001

      8 Takata, Y., "Pool Boiling on a Superhydrophilic Surface" 27 : 111-119, 2003

      9 Moreno, Jr. G., "Pool Boiling Heat Transfer of Alumina- Water, Zinc Oxide-Water and Alumina–Water + Ethylene Glycol Nanofluids" 2005

      10 Vassalo, P., "Pool Boiling Heat Transfer Experiments in Silica– Water Nano-Fluids" 47 : 407-411, 2004

      11 Das, S.K., "Pool Boiling Characteristics of Nano-Fluids" 46 : 851-862, 2003

      12 Nanostructed & Amorphous Materials Inc, "Nanostructed & Amorphous Materials Inc"

      13 Anderson, T. M., "Microelectronic Cooling by Enhanced Pool Boiling of Dielectric Fluorocarbon Liquid" 551-560, 1988

      14 Wen, D., "Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)" 51 : 4958-4965, 2008

      15 Hahne, E., "Hydrodynamic and Surface Effects on the Peak Heat Flux in Pool Boiling" 209-214, 1978

      16 Zuber, N., "Hydrodynamic Aspects of Boiling Heat Transfer" University of California 1959

      17 Coleman, H.W., "Experimentation and Uncertatinty Analysis for Engineers 2nd Edition" John Wiley & Sons, Inc. 1999

      18 Messina, A. D., "Effects of Precise Arrays of Pits on Nucleate Boiling" 24 : 141-145, 1981

      19 Liaw, S. P., "Effect of Surface Wettability on Transition Boiling Heat Transfer from a Vertical Surface" 2031-2036, 1986

      20 You, S .M., "Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer" 83 (83): 3374-3376, 2003

      21 Kim, H., "Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids" 49 : 5070-5074, 2006

      22 Fong, R. W. L., "Correlation Between the Critical Heat Flux and theFractal Surface Roughness of Zirconium Alloy Tubes" 8 : 137-146, 2001

      23 Tak, Y., "Controlled Growth of Well-Aligned ZnO Nanorods Array Using a Novel Solution Method" 109 (109): 19263-19269, 2005

      24 Bang, I. C., "Boiling Heat Transfer Performance and Phenomena of Al2–O3– Water Nano-Fluids from a Plain Surface in Pool Boiling" 48 : 2407-2419, 2005

      25 Kandlikar, S. G., "A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation" 123 : 1071-1079, 2001

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.19 0.552 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼