RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      자동 추출된 시간정보를 이용한 사건 클러스터링 = Event Clustering Using Automatically Extracted Temporal Information

      한글로보기

      https://www.riss.kr/link?id=A82322318

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      신문기사를 대상으로 사건 단위로 문서를 클러스터링 하기 위해서, 기존의 연구에서는 기사의 발행일 또는 기사의 내용만 사용하여 하나의 사건을 다른 사건과 구분하는 방법을 사용해 오고 있다. 하지만 사건의 전개가 시간 차이를 두고 진행되는 경우 또는 비슷한 시간대에 같은 범주에 속하는 사건이 발생하는 경우 기사의 발행일만 사용하여 사건 관련 기사를 구분하는 것은 한계가 있다. 본 연구에서는 한국어 신문기사를 대상으로 신문기사에 나타난 시간정보를 자동 추출하고, 이를 기사의 발행일을 기준으로 정규화 한 후 사용하여 사건 단위로 기사를 클러스터링 하는 방법을 개발하였다. 즉 한국어 신문 기사를 대상으로 기사에 나타난 시간 표현을 자동으로 추출한 후, 사건과의 유사도 비교에 사용함으로써 사건 단위 클러스터링의 정확도를 높이기 위한 방법을 제안한다.
      번역하기

      신문기사를 대상으로 사건 단위로 문서를 클러스터링 하기 위해서, 기존의 연구에서는 기사의 발행일 또는 기사의 내용만 사용하여 하나의 사건을 다른 사건과 구분하는 방법을 사용해 오...

      신문기사를 대상으로 사건 단위로 문서를 클러스터링 하기 위해서, 기존의 연구에서는 기사의 발행일 또는 기사의 내용만 사용하여 하나의 사건을 다른 사건과 구분하는 방법을 사용해 오고 있다. 하지만 사건의 전개가 시간 차이를 두고 진행되는 경우 또는 비슷한 시간대에 같은 범주에 속하는 사건이 발생하는 경우 기사의 발행일만 사용하여 사건 관련 기사를 구분하는 것은 한계가 있다. 본 연구에서는 한국어 신문기사를 대상으로 신문기사에 나타난 시간정보를 자동 추출하고, 이를 기사의 발행일을 기준으로 정규화 한 후 사용하여 사건 단위로 기사를 클러스터링 하는 방법을 개발하였다. 즉 한국어 신문 기사를 대상으로 기사에 나타난 시간 표현을 자동으로 추출한 후, 사건과의 유사도 비교에 사용함으로써 사건 단위 클러스터링의 정확도를 높이기 위한 방법을 제안한다.

      더보기

      목차 (Table of Contents)

      • 요약
      • 1. 서론
      • 2. 시간정보과 사건과의 연관성
      • 3. 사건 클러스터링
      • 4. 실험
      • 요약
      • 1. 서론
      • 2. 시간정보과 사건과의 연관성
      • 3. 사건 클러스터링
      • 4. 실험
      • 5. 결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼