RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      벌크 다결정 SnS / PEDOT:PSS 박막 이중층에서의 변조 도핑을 통한 열전 역률 강화 = Enhancement of thermoelectric power factor by modulation doping of bulk polycrystalline SnS / thin film PEDOT:PSS bilayer

      한글로보기

      https://www.riss.kr/link?id=A108153736

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Modulation doping occurs in a heterojunction where a charge carrier-rich material transfers charge to a carrier-deficient material. The modulation-doped material is intentionally selected to have higher charge carrier mobility than the modulation dopant material, so that the overall electrical conductivity can be boosted. Although this modulation doping strategy has proven effective in enhancing power factor in thermoelectrics, selection criteria for such semiconductor couples have not been explicitly clarified, resulting in only a few discovered semiconductor couples available for modulation doping-driven thermoelectric systems [1-4]. Here, we (i) report an electronic band structure-based guideline to actualize modulation doping, (ii) reveal that hole-rich PEDOT:PSS can modulation dope otherwise undoped tin monosulfide (SnS) in their bilayered structure, (iii) prove that modulation doping is responsible for thermoelectric power factor enhancement by comparing computational and experimental Seebeck coefficient and electrical conductivity values. The optimized PEDOT:PSS thin film / SnS pellet bilayered structure had a 134.7 fold improvement in electrical conductivity and a 93.6 fold power factor enhancement over those of undoped SnS, with only a ~ 20 % decrease in Seebeck coefficient. The modulation doping effect can result in further power factor improvement when SnS becomes a nanoscale thin film or nanoparticles in the future.
      번역하기

      Modulation doping occurs in a heterojunction where a charge carrier-rich material transfers charge to a carrier-deficient material. The modulation-doped material is intentionally selected to have higher charge carrier mobility than the modulation dopa...

      Modulation doping occurs in a heterojunction where a charge carrier-rich material transfers charge to a carrier-deficient material. The modulation-doped material is intentionally selected to have higher charge carrier mobility than the modulation dopant material, so that the overall electrical conductivity can be boosted. Although this modulation doping strategy has proven effective in enhancing power factor in thermoelectrics, selection criteria for such semiconductor couples have not been explicitly clarified, resulting in only a few discovered semiconductor couples available for modulation doping-driven thermoelectric systems [1-4]. Here, we (i) report an electronic band structure-based guideline to actualize modulation doping, (ii) reveal that hole-rich PEDOT:PSS can modulation dope otherwise undoped tin monosulfide (SnS) in their bilayered structure, (iii) prove that modulation doping is responsible for thermoelectric power factor enhancement by comparing computational and experimental Seebeck coefficient and electrical conductivity values. The optimized PEDOT:PSS thin film / SnS pellet bilayered structure had a 134.7 fold improvement in electrical conductivity and a 93.6 fold power factor enhancement over those of undoped SnS, with only a ~ 20 % decrease in Seebeck coefficient. The modulation doping effect can result in further power factor improvement when SnS becomes a nanoscale thin film or nanoparticles in the future.

      더보기

      참고문헌 (Reference)

      1 B. Yu, 12 : 2077-, 2012

      2 M. Varasteh, 366 : 74-, 2009

      3 D. Lee, 5 : 1800624-, 2019

      4 D. Lee, 8 : 19754-, 2016

      5 M. Zebarjadi, 11 : 2225-, 2011

      6 J. A. Newman, 87 : 10950-, 2015

      7 S. Sucharitakul, 8 : 19050-, 2016

      8 W. Albers, 32 : 2220-, 2004

      9 C. Xin, 120 : 22663-, 2016

      10 D. Chi, 104 : 193903-, 2014

      1 B. Yu, 12 : 2077-, 2012

      2 M. Varasteh, 366 : 74-, 2009

      3 D. Lee, 5 : 1800624-, 2019

      4 D. Lee, 8 : 19754-, 2016

      5 M. Zebarjadi, 11 : 2225-, 2011

      6 J. A. Newman, 87 : 10950-, 2015

      7 S. Sucharitakul, 8 : 19050-, 2016

      8 W. Albers, 32 : 2220-, 2004

      9 C. Xin, 120 : 22663-, 2016

      10 D. Chi, 104 : 193903-, 2014

      11 S. Jäckle, 5 : 1-, 2015

      12 G. J. Snyder, 7 : 105-, 2008

      13 U. Lang, 19 : 1215-, 2009

      14 C. Liu, 160 : 2481-, 2010

      15 J. Gasiorowski, 536 : 211-, 2013

      16 D. Alemu, 5 : 9662-, 2012

      17 Yang Si, 4 : 1-, 2018

      18 L. D. Hicks, 47 : 12727-, 1993

      19 M. S. Dresselhaus, 19 : 1043-, 2007

      20 P. Sinsermsuksakul, 1 : 1116-, 2011

      21 K. J. Saji, 605 : 193-, 2016

      22 S. F. Wang, 7 : 1-, 2017

      23 이동욱, "복합 열전 소재에서 출력인자 증강 메커니즘들" 한국세라믹학회 24 (24): 203-212, 2021

      24 Jay Y. Kim, "Tin monosulfide thin films grown by atomic layer deposition using tin 2,4 pentandionate and hydrogen sulfide" SPIE 2 : 4-, 2010

      25 Sung-Jae Joo ; 손지희 ; 장정인 ; 김봉서 ; 민복기, "Synthesis of Nb0.8Hf0.2FeSb0.98Sn0.02 and Hf0.25Zr0.25Ti0.5NiSn0.98Sb0.02 Half-Heusler Materials and Fabrication of Thermoelectric Generators" 대한금속·재료학회 59 (59): 904-910, 2021

      26 R. M. German, "Sintering Theory and Practice" Wiley 1996

      27 추성실 ; 홍석원 ; 김현식 ; 김상일, "Enhanced Thermoelectric Transport Properties of n-type InSe by Sn doping" 대한금속·재료학회 58 (58): 348-352, 2020

      28 J. Ling-Chin, "Energy Conversion - Current Technologies and Future Trends" 2018

      29 L. J. van der PAUW, "A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE" 174-, 1991

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.24 1.12 0.9
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.73 0.6 0.835 0.2
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼