RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Multi-Response Modelling and Optimization of Agave Cantala Natural Fiber and Multi-wall Carbon Nano Tube Reinforced Polymer Nanocomposite: Application of Mixture Design

      한글로보기

      https://www.riss.kr/link?id=A108570625

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The article intends to obtain an environment friendly, low-cost natural fiber (Agave Cantala Fiber) and Multiwalledcarbon nanotube (MWCNT) composite by the experimental design approach. More specifically, study is associatedwith multi-response modelling and optimization of a novel composite material for cleaner manufacturing. The MixtureDesign technique is adopted to ensure the mixture components' multi-response optimization, namely, MWCNT, Cantalafibers, and Epoxy resin. The tensile, flexural, and impact strength of the novel composite material are considered foroptimization. The experiments are planned as per the mixture design, and the data is collected on all these responses. The CoxResponse Trace plot, Pareto Chart for Standardized Effects, Overlaid Contour plot, and Response Optimizer plot areeffectively used to develop predictive models and to identify an optimum combination of the mixture for all the responses.
      The findings will assist in developing an optimal combination of component mixtures and a predictive model for compositematerial through the structured and robust statistical methodology. This material will assist in cleaner and greenermanufacturing of composite materials, while the approach adopted will help researchers as a template for robust compositematerial development.
      번역하기

      The article intends to obtain an environment friendly, low-cost natural fiber (Agave Cantala Fiber) and Multiwalledcarbon nanotube (MWCNT) composite by the experimental design approach. More specifically, study is associatedwith multi-response modelli...

      The article intends to obtain an environment friendly, low-cost natural fiber (Agave Cantala Fiber) and Multiwalledcarbon nanotube (MWCNT) composite by the experimental design approach. More specifically, study is associatedwith multi-response modelling and optimization of a novel composite material for cleaner manufacturing. The MixtureDesign technique is adopted to ensure the mixture components' multi-response optimization, namely, MWCNT, Cantalafibers, and Epoxy resin. The tensile, flexural, and impact strength of the novel composite material are considered foroptimization. The experiments are planned as per the mixture design, and the data is collected on all these responses. The CoxResponse Trace plot, Pareto Chart for Standardized Effects, Overlaid Contour plot, and Response Optimizer plot areeffectively used to develop predictive models and to identify an optimum combination of the mixture for all the responses.
      The findings will assist in developing an optimal combination of component mixtures and a predictive model for compositematerial through the structured and robust statistical methodology. This material will assist in cleaner and greenermanufacturing of composite materials, while the approach adopted will help researchers as a template for robust compositematerial development.

      더보기

      참고문헌 (Reference) 논문관계도

      1 P. K. Bellairu, 17 : 507-, 2020

      2 P. Prabhu, 2 : 93-, 2019

      3 R. Sakthivel, 9 : 407-, 2014

      4 D. Xing, 119 : 127-, 2019

      5 M. Z. R. Khan, 37 : 1435-, 2018

      6 A. El Moumen, 53 : 925-, 2018

      7 M. A. Fentahun, 8 : 40-, 2018

      8 E. Fechová, 149 : 263-, 2016

      9 C. Y. Song, 52 : 465-, 2020

      10 T. E. Murphy, 15 : 201-, 2005

      1 P. K. Bellairu, 17 : 507-, 2020

      2 P. Prabhu, 2 : 93-, 2019

      3 R. Sakthivel, 9 : 407-, 2014

      4 D. Xing, 119 : 127-, 2019

      5 M. Z. R. Khan, 37 : 1435-, 2018

      6 A. El Moumen, 53 : 925-, 2018

      7 M. A. Fentahun, 8 : 40-, 2018

      8 E. Fechová, 149 : 263-, 2016

      9 C. Y. Song, 52 : 465-, 2020

      10 T. E. Murphy, 15 : 201-, 2005

      11 D. C. Montgomery, 26 : 96-, 1994

      12 R. D. Snee, 18 : 19-, 1976

      13 A. M. K. Esawi, 28 : 2394-, 2007

      14 R. Andrews, 8 : 31-, 2004

      15 S. Liu, 45 : 53-, 1997

      16 L. Y. Chan, 29 : 2281-, 2000

      17 U. K. Komal, 17 : 1026-, 2020

      18 W. W. Raharjo, 15 : 98-, 2018

      19 J. P. Kumar, 16 : 37-, 2016

      20 M. Šupová, 3 : 1-, 2011

      21 I. M. Rio-echevarria, 13 : 923-, 2019

      22 H. Lorenz, 69 : 2135-, 2009

      23 G. Gkikas, 43 : 2697-, 2012

      24 T. R. Frømyr, 2012 : 1-, 2012

      25 Y. Y. Huang, 4 : 275-, 2012

      26 S. Dhakal, 4 : 7592-, 2017

      27 R. D. T. Filho, 23 : 2409-, 2009

      28 M. Boopalan, 51 : 54-, 2013

      29 K. Adekunle, 116 : 1759-, 2010

      30 M. M. Stănescu, 11 : 1-, 2019

      31 S. B. Visweswaraiah, 53 : 3725-, 2019

      32 M. G. Suresh, 8 : 3954-, 2019

      33 Y. Ma, 7 : 227-, 2017

      34 R. K. Upadhyay, 2 : 81-, 2015

      35 H. Gu, 30 : 3931-, 2009

      36 T. Krishnan, 17 : 326-, 2020

      37 S. Biswas, 105 : 933-, 2015

      38 F. M. AL-Oqla, 29 : 892-, 2020

      39 H. Modi, 4 : 595-, 2017

      40 D. Fu, 56 : 6204-, 2021

      41 R. Udhayasankar, 34 : 1720-, 2020

      42 F. Hussain, 40 : 1511-, 2006

      43 D. Mueller, 33 : 111-, 2003

      44 M. Fuqua, 52 : 259-, 2012

      45 M. R. Abir, 123 : 59-, 2019

      46 K. P. Kumar, 33 : 1879-, 2014

      47 S. Mahmud, 56 : 7231-, 2021

      48 B. F. Yousif, 40 : 378-, 2012

      49 T. Hojo, 56 : 72-, 2014

      50 S. Kim, 27 : 801-, 2008

      51 N. Saba, 76 : 87-, 2015

      52 M. Z. Rong, 61 : 1437-, 2001

      53 S. M. Sapuan, 27 : 689-, 2006

      54 A. Balaji, 16 : 613-, 2019

      55 A. Balaji, 18 : 1193-, 2017

      56 B. Galzerano, 52 : 2313-, 2017

      57 I. Shaik, 5 : 96-, 2015

      58 P. Wambua, 63 : 1259-, 2003

      59 A. K. Mohanty, 8 : 313-, 2001

      60 C. A. Adeyanju, 56 : 2797-, 2021

      61 K. Rahul, 7 : 34-, 2017

      62 L. A. Pothan, 16 : 744-, 1997

      63 A. Balaji, 6 : 60-, 2020

      64 S. Radika, 4 : 172-, 2015

      65 M. Maniruzzaman, 15 : 61-, 2006

      66 S. S. Bari, 56 : 287-, 2016

      67 A. A. Azeez, 45 : 308-, 2013

      68 P. H. C. Camargo, 12 : 1-, 2009

      69 S. Doagou-Rad, 52 : 3681-, 2018

      70 S. B. Hosseini, 14 : 311-, 2017

      71 O. I. Sekunowo, 9 : 1-, 2015

      72 S. Jangam, 52 : 2365-, 2017

      73 A. Nourbakhsh, 37 : 3269-, 2015

      74 박재준 ; 윤기근 ; 이재영, "Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment" 한국전기전자재료학회 12 (12): 98-101, 2011

      75 A. Bryant, "The SAGE Handbook of Grounded Theory" SAGE Publications Ltd 2012

      76 문상돈 ; Sook-Jeong Lee ; 송준희, "Tensile Properties and Surface Treatment of Fiber Composites with the Concentration of Polydopamine and Buffer Solution" 한국섬유공학회 22 (22): 249-255, 2021

      77 Kang-ning Han ; Wei Zhou ; Reng Qin ; Sa Yang ; Lian-Hua Ma, "Progressive Damage Analysis of Carbon Fabric-reinforced Polymer Composites under Three-point Bending" 한국섬유공학회 22 (22): 469-479, 2021

      78 Vera Obradović ; Danica Simić ; Milorad Zrilić ; Dušica B. Stojanović ; Petar S. Uskoković, "Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites" 한국섬유공학회 22 (22): 528-539, 2021

      79 A. Balaji, "Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin" Elsevier BV 2 : 100056-, 2020

      80 Ubaidillah, "Influence of additional coupling agent on the mechanical properties of polyester–agave cantala roxb based composites" AIP Publishing LLC 2016

      81 M. J. Anderson, "Formulation Simplified: Finding the Sweet Spot through Design and Analysis of Experiments with Mixtures" Productivity Press 2018

      82 J. A. Cornell, "Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data" Wiley 2011

      83 S. F. Arnold, "Design of Experiments with MINITAB" 2006

      84 K. Hinkelmann, "Design and Analysis of Experiments" John Wiley & Sons, Inc 2012

      85 안다미로 ; 최현정 ; 여상영 ; 김호동, "Behavior of Polybenzoxazine Composites Reinforced with Modified Carbon Nanotubes" 한국섬유공학회 22 (22): 442-450, 2021

      86 Pavana Kumara Bellairu, "A study on wear properties of SWCNT reinforced polymer nanocomposite" 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼