http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=M16939305
London, England : Academic Press, [2023] ©2023
2023
영어
354.81150006 판사항(23)
0-323-99543-8
일반단행본
England
Hydrogen economy : processes, supply chain, life cycle analysis and energy transition for sustainability / edited by Antonio Scipioni, Alessandro Manzardo, Jingzheng Ren.
Second edition
1 online resource (xviii, 641 pages)
Intro -- Hydrogen Economy: Processes, Supply Chain, Life Cycle Analysis, and Energy Transition for Sustainability -- Copyright -- Contents -- Contributors -- Part I: General -- Chapter 1: The role of hydrogen energy: Strengths, weaknesses, opportunities, and threats* -- 1. Introduction -- 2. PESTEL analysis -- 2.1. Political aspect -- 2.2. Economic aspect -- 2.3. Social aspect -- 2.4. Technological aspect -- 2.5. Environmental aspect -- 2.6. Legal aspect -- 3. SWOT analysis -- 3.1. SWOT method -- 3.2. SWOT analysis for hydrogen economy in China -- 3.2.1. Strengths -- Diverse energy sources -- Substantial development potential -- Cleanness and greenness -- 3.2.2. Weaknesses -- Bad economic benefits -- Shortage in critical technologies and components -- Absence of hydrogen infrastructure -- 3.2.3. Opportunities -- Strong policy support from the government -- Expected social acceptance -- Intensive cooperation -- 3.2.4. Threats -- Lack of investment sources -- Competition with other renewables and energy carriers -- Uncertain market potential -- 3.3. Alternatives strategies for promoting hydrogen economy in China -- 3.3.1. SO strategies -- 3.3.2. WO strategies -- 3.3.3. ST strategies -- 3.3.4. WT strategies -- 4. Methodology -- 4.1. Fuzzy simple additive weighting -- 4.2. Fuzzy weighted geometric mean -- 4.3. Fuzzy goal programming -- 5. Strategy prioritization for hydrogen economy in China -- 5.1. Results from the method of fuzzy simple additive weighting -- 5.2. Results from the method of fuzzy weighted geometric mean -- 5.3. Results from the method of fuzzy goal programing -- 6. Conclusions -- References -- Chapter 2: Introduction of hydrogen routines -- 1. Introduction -- 2. Hydrogen production routes from fossil fuels -- 2.1. Hydrogen production routes from natural gas -- 2.1.1. Reforming routes -- Steam-methane reforming (SMR).
Partial oxidation (POX) -- Autothermal reforming (ATR) -- 2.1.2. Pyrolysis -- 2.2. Hydrogen production routes from oil -- 2.3. Hydrogen production route from coal -- 2.3.1. Gasification -- Gasification technologies -- Underground coal gasification -- 3. Hydrogen production routes from nuclear energy -- 3.1. Thermochemical water splitting cycles -- 3.2. High temperature (steam) electrolysis -- 4. Hydrogen routes from renewable energy -- 4.1. Hydrogen route from wind energy -- 4.1.1. Water electrolysis by wind energy -- Solid polymer electrolyzer -- Liquid electrolyzer -- 4.2. Hydrogen production routes from solar energy -- 4.2.1. Water electrolysis by solar energy -- 4.2.2. Photocatalysis -- 4.2.3. Thermochemical routes -- Conventional thermolysis -- Thermochemical water splitting cycles -- 4.2.4. Photobiological -- 4.3. Hydrogen production routes from bioenergy -- 4.3.1. Thermochemical routes -- Pyrolysis -- Gasification -- Supercritical water gasification (SCWG) -- 4.3.2. Biological routes -- Biophotolysis routes -- Fermentation routes -- Acknowledgments -- References -- Chapter 3: Critical factors and cause-effect analysis for enhancing the sustainability of hydrogen supply chain* -- 1. Introduction -- 2. Criteria for the design of sustainable hydrogen supply chain -- 2.1. Economic aspect -- 2.1.1. Facility capital cost -- 2.1.2. Facility operation and maintenance costs -- 2.1.3. Feedstock cost -- 2.1.4. Transportation capital cost -- 2.1.5. Transportation operation and maintenance costs -- 2.1.6. Primary energy source cost -- 2.1.7. Storage operation cost -- 2.1.8. Net present value -- 2.1.9. Internal rate of return -- 2.1.10. Market shares -- 2.1.11. Service life -- 2.2. Technological aspect -- 2.2.1. Technological dependency -- 2.2.2. Reliability of technology -- 2.2.3. Stability of supply -- 2.2.4. Technological maturity.
2.2.5. Technology development potential -- 2.2.6. Domestic technological ability -- 2.2.7. Exergy efficiency -- 2.2.8. Technological capability -- 2.2.9. Flexibility and responsiveness -- 2.2.10. Deliver order reactiveness -- 2.2.11. Quality and education of staff -- 2.3. Environmental aspect -- 2.3.1. Energy utilization efficiency -- 2.3.2. Effect on the mitigation of harmful gases -- 2.3.3. Land use -- 2.3.4. Fossil fuel consumption -- 2.3.5. The availability of using renewable energy -- 2.4. Societal aspect -- 2.4.1. Inherent safety index -- 2.4.2. Occupational index -- 2.4.3. Social attractiveness -- 2.4.4. Human health and safety of employees -- 2.4.5. Per-capita GDP contribution -- 2.4.6. Taxes contribution -- 2.4.7. Cultural influence -- 2.4.8. Political acceptability -- 2.4.9. Security of primary energy supply -- 2.4.10. Contribution for energy sufficiency -- 3. The formulations of the proposed methods -- 3.1. DEMATEL -- 3.2. Fuzzy DEMATEL -- 3.3. BWM -- 4. Results -- 4.1. Appling DEMATEL for sustainable hydrogen supply chain -- 4.2. Appling fuzzy DEMATEL for sustainable hydrogen supply chain -- 4.3. Appling BWM for sustainable hydrogen supply chain -- 4.4. Comparisons -- 5. Discussion -- 6. Implications -- 7. Conclusion -- References -- Part II: Design, optimization, assessment and decision-making -- Chapter 4: Design and operation of hydrogen supply chains: A review on technology integration and system optimization -- 1. Introduction -- 2. Hydrogen supply chain as an integration of technological bricks -- 2.1. Production technologies -- 2.1.1. Hydrogen from fossil energy sources -- 2.1.2. Hydrogen from renewable energy sources -- 2.2. Carbon capture and storage (CCS) -- 2.3. Storage methods -- 2.3.1. Gaseous state storage method -- 2.3.2. Liquid state storage method -- 2.3.3. Solid-state storage method -- 2.3.4. Hybrid storage.
2.3.5. Seasonal storage -- 2.4. Hydrogen transportation -- 2.4.1. Pipeline -- 2.4.2. Road transportation -- 2.4.3. Sea transportation -- 3. Hydrogen applications -- 3.1. Hydrogen as a fuel -- 3.1.1. Hydrogen for road transportation -- 3.1.2. Hydrogen for maritime transportation -- 3.1.3. Hydrogen for railway transportation -- 3.1.4. Hydrogen for aeronautic and aerospace -- 3.2. Industrial applications -- 3.3. Residential applications -- 3.4. Hydrogen infrastructures for mobility worldwide -- 3.5. Benefit of multipurpose platforms for component integration: The case study of the MYRTE 2020 trigeneration platform -- 4. Modeling and optimization of hydrogen supply chains -- 4.1. MILP as a dominant model for hydrogen supply chain design and deployment -- 4.2. Single vs multiobjective optimization -- 4.3. Geographical information systems -- 5. Conclusion -- References -- Chapter 5: Review: Analysis of superstructures for hydrogen supply chain modeling -- 1. Hydrogen supply chain -- 1.1. Introduction -- 1.2. Literature review -- 1.3. Mathematical approach -- 2. Novel classification of the HSC superstructures -- 2.1. Superstructure 1 -- 2.2. Superstructure 2 -- 2.3. Superstructure 3 -- 2.4. Superstructure 4 -- 3. Identification of the generic superstructure -- 4. Discussion -- 5. Conclusions -- References -- Chapter 6: Life cycle cost analysis of hydrogen energy technologies -- 1. Introduction -- 2. Historical development and survey on life cycle costing and hydrogen energy technologies -- 3. Methods and models for life cycle costing -- 3.1. Ravenmarks approach [43] -- 3.2. SAEs approach [44] -- 3.3. National institute of standards and technologys approach [45] -- 3.4. Swarr approachs et al. [46] -- 3.5. Baldos approach [47] -- 3.6. Politano and Frohlichs approach [48] -- 4. Analytic balanced cost analysis: The proposed ``ABC´´ analysis.
4.1. The rationale -- 4.2. The scenario under study: A schematic overview -- 4.2.1. Phase #1: Environmental analysis LCA -- 4.2.2. Phase #2: Economic analysis LCC -- 4.2.3. Phase #3: AHP model definition -- 5. Conclusion -- References -- Chapter 7: Life cycle assessment of solid oxide fuel cells and polymer electrolyte membrane fuel cells: A review -- 1. Introduction -- 2. The fuel cell technology -- 2.1. Technology description -- 2.2. Applications -- 2.3. Fuel cell materials and components -- 2.3.1. Polymer electrolyte membrane fuel cell (Fig. 7.1) -- Electrolyte -- Membrane electrode assembly -- Gas diffusion layer -- Catalyst layer -- Bipolar plates -- Sealing -- 2.3.2. Solid oxide fuel cell (Fig. 7.2) -- Electrolyte -- Cathode -- Anode -- Interconnects -- 2.3.2.1. Sealing -- 3. Life cycle assessment of SOFCs and PEMFCs: A literature review -- 3.1. Energy and environmental impacts of SOFCs and PEMFCs -- 3.2. Key elements -- 3.3. Methodological insights -- 3.3.1. Goal and scope definition: System boundaries -- 3.3.2. Goal and scope definition: Functional unit -- 3.3.3. Life cycle inventory analysis: Data collection, data elaboration, and data quality -- 3.3.4. Life cycle impact assessment: Impact categories and assessment methods -- 4. Conclusions -- References -- Chapter 8: Comparison of different multicriteria decision-making methodologies for sustainability decision making* -- 1. Introduction -- 2. Data processing -- 3. Weighting methodology -- 3.1. Entropy weighting methodology -- 3.2. Ideal point weighting method -- 3.3. Delphi methodology -- 3.4. Analytical hierarchy process -- 4. Multicriteria decision-making methodology -- 4.1. TOSPIS ranking method -- 4.2. Data envelopment analysis -- 4.3. Preference ranking organization method for enrichment evaluation -- 4.4. Principal component analysis -- 5. Application.
5.1. Weighting coefficient calculation.
Includes bibliographical references and index.
0
상세조회0
다운로드