RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      고기동 전투기에 적합한 모델/센서기반 비선형 동적 모델역변환 제어 기법 개발

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper evaluates the flying qualities and stability of the nonlinear dynamic inversion (NDI) control law, in which angular acceleration is analyzed by a mathematical model or measured by an angular acceleration sensor based on the T-50 Advanced Su...

      This paper evaluates the flying qualities and stability of the nonlinear dynamic inversion (NDI) control law, in which angular acceleration is analyzed by a mathematical model or measured by an angular acceleration sensor based on the T-50 Advanced Supersonic Trainer model. The NDI has been considered the suitable nonlinear control technique for fighter aircrafts in aerospace industries, since it replaces nonlinear characteristics with the user-defined desired dynamics by inverting the original plant dynamics. To obtain the angular acceleration of the aircraft, two approaches are considered in this paper: estimating from the analytic model (model-based) or measuring from the angular acceleration sensor (sensor-based). To evaluate the robustness of the model-based or sensor-based NDI, the sensitivity analyses with model uncertainties and wide Center-of-Gravity (CG) travel situations are considered. The evaluation results of flying qualities and stability show that the sensor-based NDI considerably degrades the stability margin and pitch equivalent time delay compared with model-based NDI. However, it has the advantages of decreasing the inter-axes coupling effects and improving the robustness throughout the overall flight envelope.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. 서론
      • II. 비선형 동적 모델역변환 제어
      • III. 평가 결과
      • V. 결론
      • Abstract
      • I. 서론
      • II. 비선형 동적 모델역변환 제어
      • III. 평가 결과
      • V. 결론
      • VI. 향후 계획
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 성재민, "가로-방향축 모델역변환 제어 구조의 목표 동역학 모델 연구" 한국방위산업학회 24 (24): 66-79, 2017

      2 R. Wacker, "X-38 application of dynamic inversion flight control" 2001

      3 S. Munday, "X-38 MACH FCS overview" 2000

      4 G. P. Walker, "X-35B STOVL flight control law design and flying qualities" 2002

      5 P. Saunders, "The design approach used in the synthesis of the B-2 lateral-directional control laws, AIAA-90-3255" 1990

      6 김종섭, "T-50 정밀추적 성능 향상을 위한 세로축 제어법칙에 관한 연구" 한국항공우주학회 33 (33): 50-55, 2005

      7 김종섭, "T-50 세로축 비행제어법칙 설계에 관한 연구" 제어·로봇·시스템학회 11 (11): 963-969, 2005

      8 J. Reiner, "Robust dynamic inversion for control of highly maneuverable aircraft" 18 (18): 1995

      9 D. Ito, "Reentry vehicle flight controls design guidelines: dynamic inversion, NASA/TP-2002-210771" 2002

      10 R. J. Hanley, "Operational lessons learned from the F/A-18E/F total flight control systems integration process" 2000

      1 성재민, "가로-방향축 모델역변환 제어 구조의 목표 동역학 모델 연구" 한국방위산업학회 24 (24): 66-79, 2017

      2 R. Wacker, "X-38 application of dynamic inversion flight control" 2001

      3 S. Munday, "X-38 MACH FCS overview" 2000

      4 G. P. Walker, "X-35B STOVL flight control law design and flying qualities" 2002

      5 P. Saunders, "The design approach used in the synthesis of the B-2 lateral-directional control laws, AIAA-90-3255" 1990

      6 김종섭, "T-50 정밀추적 성능 향상을 위한 세로축 제어법칙에 관한 연구" 한국항공우주학회 33 (33): 50-55, 2005

      7 김종섭, "T-50 세로축 비행제어법칙 설계에 관한 연구" 제어·로봇·시스템학회 11 (11): 963-969, 2005

      8 J. Reiner, "Robust dynamic inversion for control of highly maneuverable aircraft" 18 (18): 1995

      9 D. Ito, "Reentry vehicle flight controls design guidelines: dynamic inversion, NASA/TP-2002-210771" 2002

      10 R. J. Hanley, "Operational lessons learned from the F/A-18E/F total flight control systems integration process" 2000

      11 C. J. Miller, "Nonlinear dynamic inversion baseline control law: flight-test results for the full-scale advanced systems testbed F/A-18 airplane" 2011

      12 J. M. Schuler, "New flying qualities criteria for relaxed static longitudinal stability" 1983

      13 J. M. Buffington, "Modular Control Law Design for the Innovative Control Effectors(ICE) Tailless Fighter Aircraft Configuration 101-3" 1999

      14 E.-J. V. Kampen, "Model and Sensor based Nonlinear Adaptive Flight Control" 2017

      15 "Military standard-flying qualities of piloted aircraft, MIL-STD-1797A"

      16 Dale F. Enns, "MULTI-APPLICATION CONTROLS - roust nonlinear multivariable aerospace controls applications" 1994

      17 D. T. Berry, "Flying qualities criteria and flight control design" 1981

      18 J. Emfinger, "Fly by wire technology" 1972

      19 J. S. Brinker, "Flight testing of reconfigurable control law on the X-36 tailless aircraft" 24 (24): 903-909, 2001

      20 P. Smith, "Flight test experience of a non-linear dynamic inversion control law on the VAAC harrier" 2000

      21 T. R. Wendel, "Flight control synthesis to meet flying qualities specifications: An evaluation of multivariable synthesis techniques" 1987

      22 D. W. Nixon, "Flight control law development for the F-35 joint strike fighter" 2004

      23 "Flight Control Systems - Design, Installation and Test of Piloted Aircraft, General Specifications for, MIL-DTL-9490E (USAF)"

      24 C. Bolkcom, "F-35 joint strike fighter (JSF) program: background, status, and issues" 2006

      25 "F-16 functional block diagram"

      26 S. G. Fuller, "Design criteria for the future of flight controls" 1982

      27 G. J. Balas, "Control design methods for good flying qualities" 2009

      28 K. Bordignon, "Control allocation for the X-35B" 2002

      29 S. B. Jacobson, "B-2 flight control system development flight test lessons learned" 1998

      30 G. A. Smith, "Application of the concept of dynamic trim control to automatic landing of carrier aircraft, NASA Technical Paper 1512" 1980

      31 P. R. Smith, "A simplified approach to non-linear dynamic inversion based flight control" 762-770, 1998

      32 G. Meyer, "A formal structure for advanced automatic flight-control systems, NASA Technical Note, NASA TN D-7940" 1975

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-02 학술지명변경 한글명 : 제어.자동화.시스템공학 논문지 -> 제어.로봇.시스템학회 논문지
      외국어명 : Journal of Control, Automation and Systems Engineering -> Journal of Institute of Control, Robotics and Systems
      KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.69 0.69 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.39 0.509 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼