수중 소음 측정이 가능한 수동 소나에 수신된 선박 방사소음은 Detection of Envelope Modulation on Noise(DEMON) 분석으로 얻은 선박 정보를 사용하여 선박 식별과 분류가 가능하다. 하지만 낮은 신호대...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A108945037
2024
Korean
KCI등재,SCOPUS,ESCI
학술저널
78-88(11쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
수중 소음 측정이 가능한 수동 소나에 수신된 선박 방사소음은 Detection of Envelope Modulation on Noise(DEMON) 분석으로 얻은 선박 정보를 사용하여 선박 식별과 분류가 가능하다. 하지만 낮은 신호대...
수중 소음 측정이 가능한 수동 소나에 수신된 선박 방사소음은 Detection of Envelope Modulation on Noise(DEMON) 분석으로 얻은 선박 정보를 사용하여 선박 식별과 분류가 가능하다. 하지만 낮은 신호대잡음비(Signal-to-Noise Ratio, SNR) 환경에서는 DEMON 그램 내 선박 정보가 담겨있는 표적 주파수선을 분석 및 파악하는데 어려움이 발생한다. 본 논문에서는 낮은 SNR 환경에서 보다 정확한 표적 식별을 위해 딥러닝 기법 중 의미론적 분할을 사용하여 표적 주파수선들을 추출하는 연구를 수행하였다. SNR과 기본 주파수를 변경시키며 생성한 모의 DEMON 그램 데이터를 사용하여 의미론적 분할 모델인 U-Net, UNet++, DeepLabv3+를 학습 후 평가하였고, 학습된 모델들을 이용하여 캐나다 조지아 해협에서 측정한 선박 방사소음 데이터셋인 DeepShip으로 제작한 DEMON 그램 예측 성능을 비교하였다. 모의 DEMON 그램으로 학습된 모델을 평가한 결과 U-Net이 성능이 가장 높았으며, DeepShip으로 만든 DEMON 그램의 표적 주파수선을 어느 정도 추출할 수 있는 것을 확인하였다.
배관의 유동 유발 진동 및 음향 유발 진동 기인 광대역 방사 소음 예측을 위한 수치 해석 기법 개발
공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법