RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Sensitivity analysis of numerical schemes in natural cooling flows for low power research reactors

      한글로보기

      https://www.riss.kr/link?id=A105477167

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The advantages of using natural circulation (NC) as a cooling system, has prompted the worldwide development to investigate this phenomenon more than before. The interesting application of the NC in low power experimental facilities and research react...

      The advantages of using natural circulation (NC) as a cooling system, has prompted the worldwide development to investigate this phenomenon more than before. The interesting application of the NC in low power experimental facilities and research reactors, highlights the obligation of study in these laminar flows. The inherent oscillations of NC between hot source and cold sink in low Grashof numbers necessitates stability analysis of cooling flow with experimental or numerical schemes. For this type of analysis, numerical methods could be implemented to desired mass, momentum and energy equations as an efficient instrument for predicting the behavior of the flow field. In this work, using the explicit, implicit and Crank-Nicolson methods, the fluid flow parameters in a natural circulation experimental test loop are obtained and the sensitivity of solving approaches are discussed. In this way, at first, the steady state and transient results from explicit are obtained and compared with experimental data. The implicit and crank-Nicolson scheme is investigated in next steps and in subsequent this research is focused on the numerical aspects of instability prediction for these schemes. In the following, the assessment of the flow behavior with coarse and fine mesh sizes and time-steps has been reported and the numerical schemes convergence are compared. For more detail research, the natural circulation of fluid was modeled by ANSYS-CFX software and results for the experimental loop are shown. Finally, the stability map for rectangular closed loop was obtained with employing the Nyquist criterion.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼