RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법 = Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis

      한글로보기

      https://www.riss.kr/link?id=A102509125

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      대기 중 이산화탄소의 재활용 기술과 재생에너지에 의한 물 분해 기술의 접목이 최근 가능해지면서 메탄올은 많은 관심을 받고 있다. 경제성이 유리하도록 메탄올 경제를 실현하기 위해서...

      대기 중 이산화탄소의 재활용 기술과 재생에너지에 의한 물 분해 기술의 접목이 최근 가능해지면서 메탄올은 많은 관심을 받고 있다. 경제성이 유리하도록 메탄올 경제를 실현하기 위해서는 고활성 메탄올 합성 촉매를 제조하여야 하며, 이를 위해서는 논리적인 접근법이 필요하다. 공침법을 통해 제조하는 Cu/ZnO 기반의 촉매는 침전, 숙성, 여과, 세척, 건조, 소성, 환원 등의 복잡한 단계로 제조되며, 100년의 역사를 가지고 있음에도 불구하고 최근에야 침전 화학과 촉매 나노구조에 대한 기초적인 이해가 이루어지고 있다. 이에 본 고에서는 단계별로 합성 변수가 침전, 소성, 환원상태 물질의 물성에 미치는 영향에 대한 최근 결과들을 리뷰하고, 화학적 기억 효과라고 부르는 이들 물성들과 최종촉매의 활성 사이의 관련성을 논의하였다. 제조 변수별 설명은 메탄올 합성을 위한 Cu/ZnO 기반 고활성 촉매를 제조하는 방법에 초점이 맞추어져 있다. 논의된 합성 전략은 공침법을 기반으로 하는 타 금속 또는 금속 산화물 담지 촉매의 제조에 활용 가능할 것으로 판단된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric CO<sub>2</sub> recycling and water splitting via renewable energy. For the concept of “methanol economy”, an...

      In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric CO<sub>2</sub> recycling and water splitting via renewable energy. For the concept of “methanol economy”, an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called “chemical memory”. All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.

      더보기

      참고문헌 (Reference)

      1 M. Behrens, "Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments" 392 : 93-102, 2011

      2 J. Ott, "Ullmann’s Encyclopedia of Industrial Chemistry" Wiley-VCH 1-27, 2012

      3 P. C. K. Vesborg, "Transient behavior of Cu/ZnO-based methanol synthesis catalysts" 262 : 65-72, 2009

      4 A. Tarasov, "Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts" 591 : 1-9, 2014

      5 C. C. Perry, "The systematic study of aluminium speciation in medium concentrated aqueous solutions" 87 : 115-124, 2001

      6 M. S. Spencer, "The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction" 8 : 259-266, 1999

      7 R. Schlögl, "The revolution continues: Energiewende 2.0" 54 : 4436-4439, 2015

      8 E. Frei, "The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO₂ catalyst for methanol synthesis from H2 and CO₂" 6 : 1721-1730, 2014

      9 K. P. de Jong, "Synthesis of Solid Catalysts" Wiley-VCH 329-351, 2009

      10 J. Schumann, "Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst" 6 : 2889-2897, 2014

      1 M. Behrens, "Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments" 392 : 93-102, 2011

      2 J. Ott, "Ullmann’s Encyclopedia of Industrial Chemistry" Wiley-VCH 1-27, 2012

      3 P. C. K. Vesborg, "Transient behavior of Cu/ZnO-based methanol synthesis catalysts" 262 : 65-72, 2009

      4 A. Tarasov, "Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts" 591 : 1-9, 2014

      5 C. C. Perry, "The systematic study of aluminium speciation in medium concentrated aqueous solutions" 87 : 115-124, 2001

      6 M. S. Spencer, "The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction" 8 : 259-266, 1999

      7 R. Schlögl, "The revolution continues: Energiewende 2.0" 54 : 4436-4439, 2015

      8 E. Frei, "The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO₂ catalyst for methanol synthesis from H2 and CO₂" 6 : 1721-1730, 2014

      9 K. P. de Jong, "Synthesis of Solid Catalysts" Wiley-VCH 329-351, 2009

      10 J. Schumann, "Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst" 6 : 2889-2897, 2014

      11 G. Fierro, "Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction" 137 : 327-348, 1996

      12 B. C. Faust, "Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy" 59 : 2651-2661, 1995

      13 E. E. Barton, "Selective solar-driven reduction of CO₂to methanol using a catalyzed p-GaP based photoelectrochemical Cell" 130 : 6342-6344, 2008

      14 C. Jeong, "Role of ZrO2 in Cu/ZnO/ZrO2 catalysts prepared from the precipitated Cu/Zn/Zr precursors" 265 : 254-263, 2016

      15 B. Bems, "Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates" 9 : 2039-2052, 2003

      16 M. M. Günter, "Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy" 203 : 133-149, 2001

      17 W. Wang, "Recent advances in catalytic hydrogenation of carbon dioxide" 40 : 3703-3727, 2011

      18 X. -M. Liu, "Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO₂" 42 : 6518-6530, 2003

      19 S. Kuld, "Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst" 53 : 5941-5945, 2014

      20 J. Schumann, "Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts" 5 : 3260-3270, 2015

      21 M. Watanabe, "Photosynthesis of methanol and methane from CO2and H2O molecules on a ZnO surface" 279 : L236-L242, 1992

      22 M. J. Hyun, "Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over Zn.O" 42 : 57-70, 2016

      23 M. Behrens, "Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts" 22 : 386-397, 2010

      24 M. Behrens, "Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al" 135 : 6061-6068, 2013

      25 Young-WoongSuh, "Optimum Washing Conditions for the Preparation of Cu/ZnO/ZrO2 for Methanol Synthesis from CO Hydrogenation: Effects of Residual Sodium" 한국화학공학회 19 (19): 17-19, 2002

      26 T. E. Gier, "Na2Zn3(CO3)4⋅3H2O, a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology" 118 : 3039-3040, 1996

      27 M. Behrens, "Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture" 2009 : 1347-1357, 2009

      28 J. -P. Lange, "Methanol synthesis: a short review of technology improvements" 64 : 3-8, 2001

      29 D. Cornthwaite, "Methanol synthesis catalyst, US Patent 3,923,694"

      30 "Methanol economy"

      31 M. Behrens, "Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts" 267 : 24-29, 2009

      32 G. Lormand, "Industrial production of synthetic methanol" 17 : 430-432, 1925

      33 T. Kandemir, "In situ study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure" 52 : 5166-5170, 2013

      34 J. -D. Grunwaldt, "In situ investigations of structural changes in Cu/ZnO catalysts" 194 : 452-460, 2000

      35 S. Zander, "In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates - consequences for the preparation of Cu/ZnO catalysts" 41 : 13413-13422, 2012

      36 A. C. Vermeulen, "Hydrolysis-precipitation studies of aluminum (III) solutions. 1. Titration of acidified aluminum nitrate solutions" 51 : 449-458, 1975

      37 G. Ertl, "Handbook of Heterogeneous Catalysis" Wiley-VCH 100-119, 2008

      38 T. Lunkenbein, "Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions" 54 : 4544-4548, 2015

      39 J. Zhang, "Electrochemical Reduction of Carbon Dioxide:Fundamentals and Technologies" CRC Press 1-45, 2016

      40 S. L. Wang, "Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions" 231 : 143-157, 2003

      41 K. F. Ortega, "Effect of Ni incorporation into malachite precursors on the catalytic properties of the resulting nanostructured CuO/NiO catalysts" 2016 : 2063-2071, 2016

      42 S. Kühl, "Cu-Based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound:A microstructural, thermoanalytical, and in situ XAS study" 20 : 3782-3792, 2014

      43 J. Schumann, "Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates" 516 : 117-126, 2016

      44 M. B. Fichtl, "Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules" 53 : 7043-7047, 2014

      45 C. Baltes, "Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis" 258 : 334-344, 2008

      46 C. Jeong, "Comparison of normal and reverse precipitation methods in the preparation of Cu/ZnO/Al2O3 catalysts for hydrogenolysis of butyl butyrate" 54 : 1-5, 2014

      47 D. M. Whittle, "Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity" 4 : 5915-5920, 2002

      48 G. A. Olah, "Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons" 74 : 487-498, 2009

      49 G. J. Millar, "Characterization of precursors to methanol synthesis catalysts Cu/ZnO system" 94 : 593-600, 1998

      50 J. -L. Li, "Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures" 137 : 105-117, 1996

      51 S. G. Jadhav, "Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies" 92 : 2557-2567, 2014

      52 M. R. Fenske, "Catalysts for the formation of alcohols from carbon monoxide and hydrogen" 21 : 1052-1055, 1929

      53 Per K. Frolich, "Catalysts for the formation of alcohols from carbon monoxide and hydrogen" 20 : 694-698, 1928

      54 C. Busetto, "Catalysts for low-temperature methanol synthesis: Preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors" 22 : 386-397, 2010

      55 W. -H. Wang, "CO₂ hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO₂reduction" 115 : 12936-12973, 2015

      56 T. van Herwijnen, "Brass formation in a copper/zinc oxide CO shift catalyst" 34 : 209-214, 1974

      57 G. A. Olah, "Beyond oil and gas: The methanol economy" 44 : 2636-2639, 2005

      58 G. A. Olah, "Beyond Oil and Gas: The Methanol Economy" Wiley-VCH 1-10, 2009

      59 P. L. Hansen, "Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals" 295 : 2053-2055, 2002

      60 D. Nazimek, "Artificial photosynthesis-CO₂towards methanol" 19 : 012010-, 2010

      61 C. Jeong, "Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate" 70 : 34-39, 2015

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼