RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Correlating the 3D melt electrospun polycaprolactone fiber diameter and process parameters using neural networks

      한글로보기

      https://www.riss.kr/link?id=O112676064

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the present work, we developed an artificial neural networks (ANN) model to predict and analyze the polycaprolactone fiber diameter as a function of 3D melt electrospinning process parameters. A total of 35 datasets having various combinations of electrospinning writing process variables (collector speed, tip to nozzle distance, applied pressure, and voltage) and resultant fiber diameter were considered for model development. The designed stand‐alone ANN software extracts relationships between the process variables and fiber diameter in a 3D melt electrospinning system. The developed model could predict the fiber diameter with reasonable accuracy for both train (28) and test (7) datasets. The relative index of importance revealed the significance of process variables on the fiber diameter. Virtual melt spinning system with the mean values of the process variables identifies the quantitative relationship between the fiber diameter and process variables.






      We developed an artificial neural networks (ANN) model to predict and analyze 3D melt electrospun polycaprolactone fiber diameter as a function of process parameters such as collector speed, tip‐to‐nozzle distance, applied pressure, and voltage. The predictions and analysis agree with experimental values and the electrospinning mechanism. A user‐friendly ANN software was created for easy use of the model without programming knowledge or artificial neural networks.
      번역하기

      In the present work, we developed an artificial neural networks (ANN) model to predict and analyze the polycaprolactone fiber diameter as a function of 3D melt electrospinning process parameters. A total of 35 datasets having various combinations of e...

      In the present work, we developed an artificial neural networks (ANN) model to predict and analyze the polycaprolactone fiber diameter as a function of 3D melt electrospinning process parameters. A total of 35 datasets having various combinations of electrospinning writing process variables (collector speed, tip to nozzle distance, applied pressure, and voltage) and resultant fiber diameter were considered for model development. The designed stand‐alone ANN software extracts relationships between the process variables and fiber diameter in a 3D melt electrospinning system. The developed model could predict the fiber diameter with reasonable accuracy for both train (28) and test (7) datasets. The relative index of importance revealed the significance of process variables on the fiber diameter. Virtual melt spinning system with the mean values of the process variables identifies the quantitative relationship between the fiber diameter and process variables.






      We developed an artificial neural networks (ANN) model to predict and analyze 3D melt electrospun polycaprolactone fiber diameter as a function of process parameters such as collector speed, tip‐to‐nozzle distance, applied pressure, and voltage. The predictions and analysis agree with experimental values and the electrospinning mechanism. A user‐friendly ANN software was created for easy use of the model without programming knowledge or artificial neural networks.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼