RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      수소 장입된 극저온용 철강 소재의 수소 취성 민감도 특성 평가Part II : 기계 물성 평가

      한글로보기

      https://www.riss.kr/link?id=A107998054

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However, hydrogen technologies must deal with safety aspects due to the specific sub�stance properties. This study aims to provide an overview on the loss of ...

      Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However, hydrogen technologies must deal with safety aspects due to the specific sub�stance properties. This study aims to provide an overview on the loss of mechanical properties of cryogenic materials, which may lead to serious consequences, such as fires and explosions. The hydrogen embrittlement of cryogenic steels was investigated through slow strain rate tensile tests (SSRTs) and thermal desorption analyses of electrochemically H-charged specimens. As a prior study to confirm mechanical properties under liquid hydrogen conditions, the amount of diffusive hydrogen that causes hydrogen embrittlement was confirmed after charging hydrogen using an electrochemical method for 4 types of steel materials applied as cryogenic materials did. When exposed to the same hydrogen charging conditions, the amount of hydrogen diffused into the 9% nickel steel is the highest compared to the austenitic steel type. It is considered that this is because the diffusion and integration of hydrogen into the interior is easy. It is necessary to analyze the relationship between hydrogen loading and mechanical properties, and this will be carried out in a follow-up study.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. 서론
      • 2. 실험 방법
      • 2.1 실험 재료
      • 2.2 미소인장시험편
      • ABSTRACT
      • 1. 서론
      • 2. 실험 방법
      • 2.1 실험 재료
      • 2.2 미소인장시험편
      • 2.3 수소 장입 방법 및 조건
      • 2.4 저속 변형 속도 시험(SSRT)
      • 2.5 충격 인성 평가
      • 3. 시험 결과 및 고찰
      • 3.1 상온 SSRT 시험 결과
      • 3.2 극저온(-196℃)SSRT 시험결과
      • 3.3 충격 인ㅇ성 평가
      • 4. 논의
      • 5. 결론
      • 후기
      • References
      더보기

      참고문헌 (Reference)

      1 김재웅, "선박 극저온 탱크용 9% 니켈강 소재 FCAW 맞대기 용접 연구 PART I : 용접부 신뢰성 연구" 한국기계기술학회 23 (23): 354-359, 2021

      2 이승용, "고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계고망간강의 수소취화 특성 평가" 한국재료학회 26 (26): 353-358, 2016

      3 Djukic MB, "The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron : Localized plasticity and decohesion" 216 : 106528-, 2019

      4 Kamikawa N, "Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides" 55 : 1781-1790, 2015

      5 Hryniewicz T, "SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions" 205 : 4228-4236, 2011

      6 A. Barnoush, "Recent developments in the study of hydrogen embrittlement : hydrogen effect on dislocation nucleation" 58 (58): 74-85, 2010

      7 D. Mori, "Recent challenges of hydrogen storage technologies for fuel cell vehicles" 34 (34): 4569-4574, 2009

      8 M. Dadfarnia, "Recent advances in the study of structural materials compatibility with hydrogen" 22 (22): 2010

      9 Koyama, M, "Overview of hydrogen embrittlement in high-Mn steels" 42 (42): 12706-12723, 2017

      10 Davies RG, "Influence of martensite content on the hydrogen embrittlement of dual-phase steels" 17 : 889-892, 1983

      1 김재웅, "선박 극저온 탱크용 9% 니켈강 소재 FCAW 맞대기 용접 연구 PART I : 용접부 신뢰성 연구" 한국기계기술학회 23 (23): 354-359, 2021

      2 이승용, "고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계고망간강의 수소취화 특성 평가" 한국재료학회 26 (26): 353-358, 2016

      3 Djukic MB, "The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron : Localized plasticity and decohesion" 216 : 106528-, 2019

      4 Kamikawa N, "Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides" 55 : 1781-1790, 2015

      5 Hryniewicz T, "SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions" 205 : 4228-4236, 2011

      6 A. Barnoush, "Recent developments in the study of hydrogen embrittlement : hydrogen effect on dislocation nucleation" 58 (58): 74-85, 2010

      7 D. Mori, "Recent challenges of hydrogen storage technologies for fuel cell vehicles" 34 (34): 4569-4574, 2009

      8 M. Dadfarnia, "Recent advances in the study of structural materials compatibility with hydrogen" 22 (22): 2010

      9 Koyama, M, "Overview of hydrogen embrittlement in high-Mn steels" 42 (42): 12706-12723, 2017

      10 Davies RG, "Influence of martensite content on the hydrogen embrittlement of dual-phase steels" 17 : 889-892, 1983

      11 Bag A, "Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels" 30 : 1193-1202, 1999

      12 D. Sampath, "Hydrogen-Assisted Cracking Behavior of Ni Alloy 718 : Microstructure, H Testing Protocol, and Fractography" 52 : 46-64, 2021

      13 Akiyama, E., "Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion" 56 : 1799-1805, 2011

      14 Ogata, "Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures" 102 : 012005-, 2015

      15 T. Ogata, "HYDROGEN ENVIRONMENT EMBRITTLEMENT EVALUATION IN FATIGUE PROPERTIES OF STAINLESS STEEL SUS304L AT CRYOGENIC TEMPERATURES" AIP 2010

      16 Dong, C., "Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking" 34 : 9879-9884, 2009

      17 Momotani, Y., "Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel" 42 : 3371-3379, 2016

      18 Kheradmand N, "Effect of hydrogen on the hardness of different phases in super duplex stainless steel" 41 : 704-712, 2016

      19 S. Dwivedi, "Effect of hydrogen in advanced high strength steel materials" (51) : 28007-28030, 2019

      20 S. Deya, "Effect of Hydrogen on Mechanical Degradation and Fatigue in 7075 Aluminium Alloy with In-situ Hydrogenation" 114 : 461-469, 2015

      21 Aoki, M., "Deformation microstructures of a low carbon steel characterized by tritium autoradiography and thermal desorption spectroscopy" 58 : 1141-1148, 1994

      22 E. Merson, "Confocal laser scanning microscopy : the technique for quantitative fractographic analysis" 183 : 147-158, 2017

      23 Chida T, "Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels" 56 : 1268-1275, 2016

      24 Nguyen, L., "Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures" 9 : 625-, 2019

      25 L. Fournier, "Cathodic hydrogen embrittlement in alloy 718" 269 (269): 111-119, 1999

      26 Liu, Q., "A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels" 31 : 85-103, 2013

      27 Bal B., "A New Venue Toward Predicting the Role of Hydrogen Embrittlement on Metallic Materials" 1 : 1-14, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2015-04-01 학회명변경 영문명 : Journal of the Korean Society of Mechanical Technology -> Korean Society of Mechanical Technology KCI등재
      2014-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2011-01-01 평가 등재후보 1차 FAIL (등재후보2차) KCI등재후보
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.4 0.36
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.39 0.38 0.279 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼