RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Neutrino physics

      한글로보기

      https://www.riss.kr/link?id=M10851945

      • 저자
      • 발행사항

        Bristol ; Philadelphia: Institute of Physics Pub., c2004

      • 발행연도

        2004

      • 작성언어

        영어

      • 주제어
      • DDC

        539.7/215 판사항(22)

      • ISBN

        0750307501

      • 자료형태

        단행본(다권본)

      • 발행국(도시)

        England

      • 서명/저자사항

        Neutrino physics / K. Zuber.

      • 형태사항

        xvi, 438 p.: ill.; 24 cm.

      • 총서사항

        Series in high energy physics, cosmology and gravitation

      • 일반주기명

        Includes bibliographical references (p. 406-431) and index.

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 서강대학교 도서관 소장기관정보 Deep Link
        • 연세대학교 학술문화처 도서관 소장기관정보 Deep Link
        • 전남대학교 중앙도서관 소장기관정보
        • 중앙대학교 서울캠퍼스 학술정보원 소장기관정보 Deep Link
        • 한국항공대학교 도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • Preface = xiii
      • Notation = xv
      • 1 Important historical experiments = 1
      • 1.1 'The birth of the neutrino' = 1
      • CONTENTS
      • Preface = xiii
      • Notation = xv
      • 1 Important historical experiments = 1
      • 1.1 'The birth of the neutrino' = 1
      • 1.2 Nuclear recoil experiment by Rodeback and Allen = 4
      • 1.3 Discovery of the neutrino by Cowan and Reines = 4
      • 1.4 Difference between $$ν_e$$ and $$\bar v_e$$ and solar neutrino detection = 5
      • 1.5 Discovery of parity violation in weak interactions = 7
      • 1.6 Direct measurement of the helicity of the neutrino = 10
      • 1.7 Experimental proof that $$ν_μ$$ is different from $$ν_e$$ = 11
      • 1.8 Discovery of weak neutral currents = 12
      • 1.9 Discovery of the weak gauge bosons W and Z = 14
      • 1.10 Observation of neutrinos from SN 1987 A = 16
      • 1.11 Number of neutrino flavours from the width of the $$Z^0$$ = 16
      • 2 Properties of neutrinos = 19
      • 2.1 Helicity and chirality = 19
      • 2.2 Charge conjugation = 22
      • 2.3 Parity transformation = 23
      • 2.4 Dirac and Majorana mass terms = 24
      • 2.4.1 Generalization to n flavours = 28
      • 2.5 Lepton number = 29
      • 2.5.1 Experimental status of lepton number violation = 30
      • 3 The standard model of particle physics = 33
      • 3.1 The V-A theory of the weak interaction = 33
      • 3.2 Gauge theories = 35
      • 3.2.1 The gauge principle = 36
      • 3.2.2 Global symmetries = 38
      • 3.2.3 Local(= gauge) symmetries = 39
      • 3.2.4 Non-Abelian gauge theories(= Yang-Mills theories) = 40
      • 3.3 The Glashow-Weinberg-Salam model = 41
      • 3.3.1 Spontaneous symmetry breaking and the Higgs mechanism = 44
      • 3.3.2 The CKM mass matrix = 48
      • 3.3.3 CP violation = 49
      • 3.4 Experimental determination of fundamental parameters = 51
      • 3.4.1 Measurement of the Fermi constant $$G_F$$ = 51
      • 3.4.2 Neutrino-electron scattering and the coupling constants gv and gA = 52
      • 3.4.3 Measurement of the Weinberg angle = 58
      • 3.4.4 Measurement of the gauge boson masses $$m_W$$ and $$m_Z$$ = 59
      • 3.4.5 Search for the Higgs boson = 61
      • 4 Neutrinos as a probe of nuclear structure = 64
      • 4.1 Neutrino beams = 64
      • 4.1.1 Conventional beams = 64
      • 4.1.2 $$ν_τ$$ beams = 69
      • 4.1.3 Neutrino beams from muon decay = 69
      • 4.2 Neutrino detectors = 70
      • 4.2.1 CDHS = 70
      • 4.2.2 NOMAD = 71
      • 4.2.3 CHORUS = 72
      • 4.3 Total cross section for neutrino-nucleon scattering = 73
      • 4.4 Kinematics of deep inelastic scattering = 75
      • 4.5 Quasi-elastic neutrino-nucleon scattering = 77
      • 4.5.1 Quasi-elastic CC reactions = 78
      • 4.5.2(Quasi-)elastic NC reactions = 79
      • 4.6 Coherent, resonant and diffractive production = 81
      • 4.7 Structure function of nucleons = 83
      • 4.8 The quark-parton model, parton distribution functions = 84
      • 4.8.1 Deep inelastic neutrino proton scattering = 85
      • 4.9 y distributions and quark content from total cross sections = 90
      • 4.9.1 Sum rules = 93
      • 4.10 Charm physics = 95
      • 4.11 Neutral current reactions = 98
      • 4.12 Neutrino cross section on nuclei = 101
      • 5 Neutrino masses and physics beyond the standard model = 105
      • 5.1 Running coupling constants = 106
      • 5.2 The minimal SU(5) model = 107
      • 5.2.1 Proton decay = 110
      • 5.3 The SO(10) model = 111
      • 5.3.1 Left-right symmetric models = 113
      • 5.4 Supersymmetry = 114
      • 5.4.1 The minimal supersymmetric standard model(MSSM) = 115
      • 5.4.2 R-parity = 117
      • 5.4.3 Experimental search for supersymmetry = 117
      • 5.5 Neutrino masses = 121
      • 5.5.1 Neutrino masses in the electroweak theory = 121
      • 5.5.2 Neutrino masses in the minimal SU(5) model = 122
      • 5.5.3 Neutrino masses in the SO(10) model and the seesaw mechanism = 123
      • 5.5.4 Neutrino masses in SUSY and beyond = 124
      • 5.6 Neutrino mixing = 124
      • 6 Direct neutrino mass searches = 127
      • 6.1 Fundamentals of β-decay = 127
      • 6.1.1 Matrix elements = 129
      • 6.1.2 Phase space calculation = 131
      • 6.1.3 Kurie plot and ft values = 133
      • 6.2 Searches for $$m_{\bar v_e}$$ = 136
      • 6.2.1 General considerations = 136
      • 6.2.2 Searches using spectrometers = 137
      • 6.2.3 Cryogenic searches = 141
      • 6.2.4 Kinks in β-decay = 142
      • 6.3 Searches for m$$ν_e$$ = 144
      • 6.4 m$$ν_μ$$ determination from pion-decay = 145
      • 6.5 Mass of the $$ν_τ$$ from tau-decay = 146
      • 6.6 Electromagnetic properties of neutrinos = 147
      • 6.6.1 Electric dipole moments = 148
      • 6.6.2 Magnetic dipole moments = 149
      • 6.7 Neutrino decay = 151
      • 6.7.1 Radiative decay νH → νL + γ = 152
      • 6.7.2 The decay νH → νL + $$e^+$$$$e^-$$ = 154
      • 6.7.3 The decay νH → νL + x = 154
      • 7 Double β-decay = 156
      • 7.1 Introduction = 156
      • 7.2 Decay rates = 161
      • 7.2.1 The 2νββ decay rates = 161
      • 7.2.2 The 0νββ decay rates = 164
      • 7.2.3 Majoron accompanied double β-decay = 166
      • 7.3 Nuclear structure effects on matrix elements = 167
      • 7.4 Experiments = 170
      • 7.4.1 Practical considerations in low-level counting = 172
      • 7.4.2 Direct counting experiments = 172
      • 7.4.3 Geochemical experiments = 177
      • 7.4.4 Radiochemical experiments = 179
      • 7.5 Interpretation of the obtained results = 179
      • 7.5.1 Effects of MeV neutrinos = 181
      • 7.5.2 Transitions to excited states = 182
      • 7.5.3 Majoron accompanied decays = 182
      • 7.5.4 Decay rates for SUSY-induced 0νββ-decay = 182
      • 7.6 The future = 183
      • 7.7 $$β^+$$$$β^+$$-decay = 184
      • 7.8 CP phases and double β-decay = 185
      • 7.9 Generalization to three flavours = 186
      • 7.9.1 General considerations = 186
      • 8 Neutrino oscillations = 190
      • 8.1 General formalism = 190
      • 8.2 CP and T violation in neutrino oscillations = 193
      • 8.3 Oscillations with two neutrino flavours = 194
      • 8.4 The case for three flavours = 195
      • 8.5 Experimental considerations = 197
      • 8.6 Nuclear reactor experiments = 199
      • 8.6.1 Experimental status = 200
      • 8.6.2 Future = 206
      • 8.7 Accelerator-based oscillation experiments = 206
      • 8.7.1 LSND = 207
      • 8.7.2 KARMEN = 209
      • 8.7.3 Future test of the LSND evidence-MiniBooNE = 209
      • 8.8 Searches at higher neutrino energy = 210
      • 8.8.1 CHORUS and NOMAD = 211
      • 8.9 Neutrino oscillations in matter = 215
      • 8.10 CP and T violation in matter = 218
      • 8.11 Possible future beams = 218
      • 8.11.1 Off-axis beams and experiments = 219
      • 8.11.2 Beta beams = 220
      • 8.11.3 Superbeams = 220
      • 8.11.4 Muon storage rings-neutrino factories = 220
      • 9 Atmospheric neutrinos = 222
      • 9.1 Cosmic rays = 222
      • 9.2 Interactions within the atmosphere = 224
      • 9.3 Experimental status = 230
      • 9.3.1 Super-Kamiokande = 230
      • 9.3.2 Soudan-2 = 239
      • 9.3.3 MACRO = 239
      • 9.4 Future activities-long-baseline experiments = 242
      • 9.4.1 K2K = 242
      • 9.4.2 MINOS = 244
      • 9.4.3 CERN-Gran Sasso = 245
      • 9.4.4 MONOLITH = 247
      • 9.4.5 Very, large water Cerenkov detectors = 248
      • 9.4.6 AQUA-RICH = 248
      • 10 Solar neutrinos = 250
      • 10.1 The standard solar model = 250
      • 10.1.1 Energy production processes in the Sun = 250
      • 10.1.2 Reaction rates = 254
      • 10.1.3 The solar neutrino spectrum = 255
      • 10.2 Solar neutrino experiments = 260
      • 10.2.1 The chlorine experiment = 262
      • 10.2.2 Super-Kamiokande = 264
      • 10.2.3 The gallium experiments = 266
      • 10.2.4 The Sudbury Neutrino Observatory(SNO) = 269
      • 10.3 Attempts at theoretical explanation = 271
      • 10.3.1 Neutrino oscillations as a solution to the solar neutrino problem = 271
      • 10.3.2 Neutrino oscillations in matter and the MSW effect = 272
      • 10.3.3 Experimental signatures and results = 280
      • 10.3.4 The magnetic moment of the neutrino = 281
      • 10.4 Future experiments = 286
      • 10.4.1 Measuring $${}^7$$Be neutrinos with the Borexino experiment = 287
      • 10.4.2 Real-time measurement of pp neutrinos using coincidence techniques = 288
      • 11 Neutrinos from supernovae = 290
      • 11.1 Supernovae = 290
      • 11.1.1 The evolution of massive stars = 291
      • 11.1.2 The actual collapse phase = 294
      • 11.2 Neutrino emission in supernova explosions = 299
      • 11.3 Detection methods for supernova neutrinos = 301
      • 11.4 Supernova 1987A = 302
      • 11.4.1 Characteristics of supernova 1987A = 304
      • 11.4.2 Neutrinos from SN 1987A = 308
      • 11.4.3 Neutrino properties from SN 1987A = 310
      • 11.5 Supernova rates and future experiments = 315
      • 11.5.1 Cosmic supernova relic neutrino background = 316
      • 11.6 Neutrino oscillations and supernova signals = 316
      • 11.6.1 Effects on the prompt $$ν_e$$ burst = 318
      • 11.6.2 Cooling phase neutrinos = 319
      • 11.6.3 Production of r-process isotopes = 319
      • 11.6.4 Neutrino mass hierarchies from supernove signals = 320
      • 11.6.5 Resonant spin flavour precession in supernovae = 325
      • 12 Ultra-high energetic cosmic neutrinos = 327
      • 12.1 Sources of high-energy cosmic neutrinos = 327
      • 12.1.1 Neutrinos produced in acceleration processes = 328
      • 12.1.2 Neutrinos produced in annihilation or decay of heavy particles = 332
      • 12.1.3 Event rates = 334
      • 12.1.4 ν from AGNs = 334
      • 12.1.5 ν from GRBs = 337
      • 12.1.6 Cross sections = 340
      • 12.2 Detection = 344
      • 12.2.1 Water Cerenkov detectors = 349
      • 12.2.2 Ice Cerenkov detectors-AMANDA, ICECUBE = 353
      • 12.2.3 Alternative techniques-acoustic and radio detection = 355
      • 12.2.4 Horizontal air showers-the AUGER experiment = 356
      • 13 Neutrinos in cosmology = 361
      • 13.1 Cosmological models = 361
      • 13.1.1 The cosmological constant A = 365
      • 13.1.2 The inflationary phase = 367
      • 13.1.3 The density in the universe = 368
      • 13.2 The evolution of the universe = 370
      • 13.2.1 The standard model of cosmology = 370
      • 13.3 The cosmic microwave background(CMB) = 376
      • 13.3.1 Spectrum and temperature = 376
      • 13.3.2 Measurement of the spectral form and temperature of the CMB = 377
      • 13.3.3 Anisotropies in the 3 K radiation = 378
      • 13.4 Neutrinos as dark matter = 382
      • 13.5 Candidates for dark matter = 382
      • 13.5.1 Non-baryonic dark matter = 382
      • 13.5.2 Direct and indirect experiments = 386
      • 13.6 Neutrinos and large-scale structure = 386
      • 13.7 The cosmic neutrino background = 390
      • 13.8 Primordial nucleosynthesis = 391
      • 13.8.1 The process of nucleosynthesis = 392
      • 13.8.2 The relativistic degrees of freedom $$g_{eff}$$ and the number of neutrino flavours = 396
      • 13.9 Baryogenesis via leptogenesis = 397
      • 14 Summary and outlook = 401
      • References = 406
      • Index = 432
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      알라딘

      Neutrino Physics (Hardcover)

      품절 255,290원 209,330원 (18%)

      종이책 구매

      10,470포인트
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼