RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      Development and Application of Guidelines for Compliance with IEC 62304 International Standards for AI Medical Device Software

      한글로보기

      https://www.riss.kr/link?id=A107274108

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 인공지능 의료기기 소프트웨어의 표준 준수 방안
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 인공지능 의료기기 소프트웨어의 표준 준수 방안
      • 4. 인공지능 의료기기 소프트웨어의 품질관리 프로세스
      • 5. 적용 사례
      • 6. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 Gannous, "Toward a Systematic and Safety Evidence Productive Verification Approach for Safety-Critical Systems" 329-336, 2018

      2 Zimmerman, Megan, "Smart Manufacturing and The Promotion of ArtificiallyIntelligent Human-Robot Collaborations in Smalland Medium-sized Enterprises" 2017

      3 Chinzei, Kiyoyuki, "Regulatory science on AI-based medical devices and systems" 7 : 118-123, 2018

      4 FDA, "Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)"

      5 Ravela, Ravi, "No-reference image quality assessment based on deep convolutional neural networks" 10996 : 2019

      6 IEC, "IEC 62304, Medical device software-software life-cycle processes"

      7 MFDS, "Guidelines for Permit and Review of Medical Devices with Big Data and Artificial Intelligence (AI) Technology"

      8 MFDS, "Guidelines for Evaluating Clinical Effectiveness of Artificial Intelligence (AI) -based Medical Devices"

      9 Redd, "Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity" 103 (103): 2019

      10 Gulshan, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs" 316 (316): 2016

      1 Gannous, "Toward a Systematic and Safety Evidence Productive Verification Approach for Safety-Critical Systems" 329-336, 2018

      2 Zimmerman, Megan, "Smart Manufacturing and The Promotion of ArtificiallyIntelligent Human-Robot Collaborations in Smalland Medium-sized Enterprises" 2017

      3 Chinzei, Kiyoyuki, "Regulatory science on AI-based medical devices and systems" 7 : 118-123, 2018

      4 FDA, "Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)"

      5 Ravela, Ravi, "No-reference image quality assessment based on deep convolutional neural networks" 10996 : 2019

      6 IEC, "IEC 62304, Medical device software-software life-cycle processes"

      7 MFDS, "Guidelines for Permit and Review of Medical Devices with Big Data and Artificial Intelligence (AI) Technology"

      8 MFDS, "Guidelines for Evaluating Clinical Effectiveness of Artificial Intelligence (AI) -based Medical Devices"

      9 Redd, "Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity" 103 (103): 2019

      10 Gulshan, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs" 316 (316): 2016

      11 Coyner, Aaron S., "Deep learning for image quality assessment of fundus images in retinopathy of prematurity" 1224-, 2018

      12 Nahm, Meredith, "Clinical research informatics" 175-201, 2012

      13 de Iorio, F., "Automatic detection of intestinal juices in wireless capsule video endoscopy" 4 : 719-722, 2006

      14 Sujit, "Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks" 50 (50): 1260-1267, 2019

      15 Reginatto, "Assessment of CT image quality using a Bayesian approach" 54 (54): 2017

      16 KOHAVI, Ron, "A study of cross-validation and bootstrap for accuracy estimation and model selection" 14 (14): 1137-1145, 1995

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2021 평가예정 계속평가 신청대상 (등재유지)
      2016-01-01 평가 우수등재학술지 선정 (계속평가)
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 학술지 통합 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.373 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼