RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Evaluation of nonlinear behavior and resisting capacity of reinforced concrete columns subjected to blast loads

      한글로보기

      https://www.riss.kr/link?id=A107471595

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>A numerical method to estimate the dynamic response of reinforced concrete (RC) columns subjected to axial and blast loads is introduced in this paper. Upon adopting Timoshenko's beam theory, both the flexural and direct shear behaviors are incorporated into the numerical formulation. The moment-curvature relationship of a reinforced concrete (RC) section is based on the construction of the bending stiffness and, in advance, a dynamic increase factor (DIF), usually defined in the stress-strain relations of concrete and steel, is newly designed to be defined in the moment-curvature relation. In addition to the description of the dynamic characteristics in the RC section, additional modification of the moment-curvature relation is also performed to exactly simulate the large plastic deformation concentrated at the mid-span or beam-column joint due to the bond-slip or anchorage slip after yielding of the main reinforcement. Finally, the validity of the proposed method is verified by comparing the analytical results with the experimental data, and then the pressure-impulse (P–I) diagrams are constructed and compared to review the change in the resisting capacity of a RC column according to the variation of the axial force and slenderness ratio.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A numerical model incorporating the flexural behavior and the direct shear behavior is proposed. </LI> <LI> A dynamic increase factor (DIF) for the moment-curvature relationship is newly designed. </LI> <LI> The verification of the numerical model is performed through comparison with experimental data. </LI> <LI> A parametric study of RC column is performed to review the influence of the parameters. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>A numerical method to estimate the dynamic response of reinforced concrete (RC) columns subjected to axial and blast loads is introduced in this paper. Upon adopting Timoshenko's beam theory, bo...

      <P><B>Abstract</B></P> <P>A numerical method to estimate the dynamic response of reinforced concrete (RC) columns subjected to axial and blast loads is introduced in this paper. Upon adopting Timoshenko's beam theory, both the flexural and direct shear behaviors are incorporated into the numerical formulation. The moment-curvature relationship of a reinforced concrete (RC) section is based on the construction of the bending stiffness and, in advance, a dynamic increase factor (DIF), usually defined in the stress-strain relations of concrete and steel, is newly designed to be defined in the moment-curvature relation. In addition to the description of the dynamic characteristics in the RC section, additional modification of the moment-curvature relation is also performed to exactly simulate the large plastic deformation concentrated at the mid-span or beam-column joint due to the bond-slip or anchorage slip after yielding of the main reinforcement. Finally, the validity of the proposed method is verified by comparing the analytical results with the experimental data, and then the pressure-impulse (P–I) diagrams are constructed and compared to review the change in the resisting capacity of a RC column according to the variation of the axial force and slenderness ratio.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A numerical model incorporating the flexural behavior and the direct shear behavior is proposed. </LI> <LI> A dynamic increase factor (DIF) for the moment-curvature relationship is newly designed. </LI> <LI> The verification of the numerical model is performed through comparison with experimental data. </LI> <LI> A parametric study of RC column is performed to review the influence of the parameters. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼