RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Performance Improvement of Feature-Based Fault Classification for Rotor System

      한글로보기

      https://www.riss.kr/link?id=A106892487

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For the management of rotating machines, machine learning (ML) has been researched with the use of feature parameters that have physical and statistical meanings of vibration signals. Genetic algorithm (GA) and principal component analysis (PCA) are t...

      For the management of rotating machines, machine learning (ML) has been researched with the use of feature parameters that have physical and statistical meanings of vibration signals. Genetic algorithm (GA) and principal component analysis (PCA) are the algorithms used for the selection or extraction process of the features; equipment condition. This study proposes a new method to maximize the advantages of the extraction and selection algorithms, thereby improving the fault classifi cation performance. The proposed method is estimated in a variety of equipment conditions by selecting and extracting the eff ective features for status classifi cation. To evaluate the performance of the fault classifi cation through feature selection and extraction of the ML, a comparative analysis with the proposed method and the original method is also performed. With Lab-scale gearbox, several types of fault tests are conducted, and seven diff erent fault types of equipment conditions, including the normal status, are simulated. The results of the experiments show that, the performance of classifi cation of GA for feature selection is 85%, while PCA for feature extraction is 53%. The performance result of the proposed method for fault classifi cation is 95%, meaning that the performance of fault diagnosis is more effi cient in terms of discriminative learning than the original method. Therefore, the proposed method with feature extraction and selection algorithm can improve the fault classifi cation performance by 10% and more for fault diagnosis through ML.

      더보기

      참고문헌 (Reference)

      1 김현중, "특징에 따른 기어박스 결함의 진동신호 분석" 한국소음진동공학회 27 (27): 419-424, 2017

      2 김정민, "배관 균열 및 밸브 개폐에 따른 진동과 음향방출의 특징 분석" 한국소음진동공학회 27 (27): 857-862, 2017

      3 김현중, "기어박스 결함 유형에 따른 고장진단을 위한 특징 분석" 한국소음진동공학회 27 (27): 312-317, 2017

      4 정덕영, "기어 이 파손 정도에 따른 진동신호의 특징기반 경향 감시" 한국소음진동공학회 29 (29): 199-205, 2019

      5 안병현, "가스터빈 고장 진단을 위한 기계 학습과 유전 알고리즘을 이용한특징 분석" 한국정밀공학회 35 (35): 163-167, 2018

      6 Trendafi lova, I., "Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition" 313 : 560-566, 2008

      7 Yang, H., "Vibration feature extraction techniques for fault diagnosis of rotating machinery: A literature survey" 2003

      8 Preuveneers, D., "The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0" 9 : 287-298, 2017

      9 Rekimoto, J., "The information cube: Using transparency in 3D information visualization" 1993

      10 Shao, R., "The fault extraction and classifi cation of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform" 54 : 118-132, 2014

      1 김현중, "특징에 따른 기어박스 결함의 진동신호 분석" 한국소음진동공학회 27 (27): 419-424, 2017

      2 김정민, "배관 균열 및 밸브 개폐에 따른 진동과 음향방출의 특징 분석" 한국소음진동공학회 27 (27): 857-862, 2017

      3 김현중, "기어박스 결함 유형에 따른 고장진단을 위한 특징 분석" 한국소음진동공학회 27 (27): 312-317, 2017

      4 정덕영, "기어 이 파손 정도에 따른 진동신호의 특징기반 경향 감시" 한국소음진동공학회 29 (29): 199-205, 2019

      5 안병현, "가스터빈 고장 진단을 위한 기계 학습과 유전 알고리즘을 이용한특징 분석" 한국정밀공학회 35 (35): 163-167, 2018

      6 Trendafi lova, I., "Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition" 313 : 560-566, 2008

      7 Yang, H., "Vibration feature extraction techniques for fault diagnosis of rotating machinery: A literature survey" 2003

      8 Preuveneers, D., "The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0" 9 : 287-298, 2017

      9 Rekimoto, J., "The information cube: Using transparency in 3D information visualization" 1993

      10 Shao, R., "The fault extraction and classifi cation of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform" 54 : 118-132, 2014

      11 Saitta, L., "Support-vector networks" 20 : 273-297, 1995

      12 Widodo, A., "Support vector machine in machine condition monitoring and fault diagnosis" 21 : 2560-2574, 2007

      13 김동현, "Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry" 한국정밀공학회 5 (5): 555-568, 2018

      14 Lee, J., "Service innovation and smart analytics for Industry 4.0 and big data environment" 16 : 3-8, 2014

      15 Parker, J. R., "Rank and response combination from confusion matrix data" 2 : 113-120, 2001

      16 De Jong, K., "Learning with genetic algorithms : An overview" 3 (3): 121-138, 1988

      17 Jeong, H. D., "Industrial artifi cial intelligence" 27 (27): 3-7, 2017

      18 Jack, L. B., "Genetic algorithms for feature selection in machine condition monitoring with vibration signals" 147 : 205-212, 2000

      19 Leardi, R., "Genetic algorithms as strategy for feature selection" 6 : 267-281, 1992

      20 Vafaie, H., "Genetic algorithms as a tool for feature selection in machine learning" 1992

      21 Goldberg, D. E., "Genetic algorithm and machine learning" 3 (3): 95-99, 1988

      22 Samanta, B., "Gear fault detection using artifi cial neural networks and support vector machines with genetic algorithms" 18 : 625-644, 2004

      23 김정섭, "Development of Data-Driven In-Situ Monitoring and Diagnosis System of Fused Deposition Modeling (FDM) Process Based on Support Vector Machine Algorithm" 한국정밀공학회 5 (5): 479-486, 2018

      24 Nacib, L., "Detecting gear tooth cracks using cepstral analysis in gearbox of helicopters" 5 : 139-145, 2013

      25 하정민, "Degradation Trend Estimation and Prognostics for Low Speed Gear Lifetime" 한국정밀공학회 19 (19): 1099-1105, 2018

      26 Samanta, B., "Artifi cial neural network based fault diagnostics of rolling element bearings using time-domain features" 17 : 317-328, 2003

      27 Widodo, A., "Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motor" 33 (33): 241-250, 2007

      28 Lindasay, I. S., "A tutorial on principal components analysis"

      29 Randall, R. B., "A history of Cepstrum analysis its application to mechanical problems" 97 : 3-19, 2016

      30 신인선, "A Framework for Prognostics and Health Management Applications toward Smart Manufacturing Systems" 한국정밀공학회 5 (5): 535-554, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼