RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      매월 조사되는 주택 가격 변동률의 이상치 탐색 방법에 관한 연구 = Outlier Detection Methods for Monthly Rate of Housing Price

      한글로보기

      https://www.riss.kr/link?id=A100003820

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In statistical theory, an outlier is a value that is numerically distant from overall pattern of a distribution. It may be a meaningful observation, but it comes from an error in survey, data entry and process in most cases. Detection and handling are...

      In statistical theory, an outlier is a value that is numerically distant from overall pattern of a distribution. It may be a meaningful observation, but it comes from an error in survey, data entry and process in most cases. Detection and handling are needed because outliers by errors debase the statistical quality leading to biased parameter estimation. Generally, traditional Box-plot or Z-score are very useful for univariate outlier detection and a Median rule could be applied in the non-Gaussian case. These methods calculate the tolerance interval that defines the range of acceptable observation values. Outlier detection for periodic surveys would consider the past view, because it is based on a ratio of value comparing the current time with previous time. If time period, however, is short, a state to get many unchanged values can occur. In this case, the ratio is centered at 1, and therefore outlier detection method reflecting this factor is required. This paper considers Quartile Method with power transformation and Hidiroglou-Berthelot(1986) method that is efficient in periodic data. The methods were applied to housing sales price. We suggest an outlier detection method for real-world data. In addition, we also analyzed data using Tukey Algorithm of United Kingdom``s office of National Statistic(ONS).

      더보기

      참고문헌 (Reference)

      1 Hoaglin, D. C., "Understanding robust and exploratory data analysis" Wiley 1983

      2 Thompson, K. J., "Statistical methods for developing ratio edit tolerances for economic data" 15 : 517-535, 1999

      3 Hidiroglou, M. A., "Statistical editing and imputation for periodic business surveys" 12 : 73-84, 1986

      4 Carling, K., "Resistant outlier rules and the non-Gaussian case" 33 : 249-258, 2000

      5 Lee, H., "Outliers in Sample Surveys" Statistics Canada 1992

      6 Liu, R. Y., "On a notion of data depth based on random simplices" 18 : 405-414, 1990

      7 Granquist, L., "Improving the traditional editing process, In Business Survey Methods" John Wiley & Sons 1995

      8 John W. Tukey, "Exploratory Data Analysis" Addison-Wesley 1977

      9 Hubert, M., "An adjusted boxplot for skewed distributions" 52 : 5186-5201, 2008

      10 Barnerjee, S., "A simple univariate outlier identification procedure designed for large samples" 36 : 249-263, 2007

      1 Hoaglin, D. C., "Understanding robust and exploratory data analysis" Wiley 1983

      2 Thompson, K. J., "Statistical methods for developing ratio edit tolerances for economic data" 15 : 517-535, 1999

      3 Hidiroglou, M. A., "Statistical editing and imputation for periodic business surveys" 12 : 73-84, 1986

      4 Carling, K., "Resistant outlier rules and the non-Gaussian case" 33 : 249-258, 2000

      5 Lee, H., "Outliers in Sample Surveys" Statistics Canada 1992

      6 Liu, R. Y., "On a notion of data depth based on random simplices" 18 : 405-414, 1990

      7 Granquist, L., "Improving the traditional editing process, In Business Survey Methods" John Wiley & Sons 1995

      8 John W. Tukey, "Exploratory Data Analysis" Addison-Wesley 1977

      9 Hubert, M., "An adjusted boxplot for skewed distributions" 52 : 5186-5201, 2008

      10 Barnerjee, S., "A simple univariate outlier identification procedure designed for large samples" 36 : 249-263, 2007

      11 Liu, R. Y., "A quality index based on data depth and multivariate rank tests" 88 : 252-260, 1993

      12 Serfling, R., "A depth function and a scale curve based on spatial quantiles, In Statistical data analysis based on the LI-Norm and related methods" Birkhauser 25-38, 2002

      13 Brys, G., "A comparison of some new measures of skewness, In Developments in Roubust Statistics (ICORS 2001)" Springer-Verlag 98-113, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-19 학술지명변경 외국어명 : The Journal of Korea Real Estate Analysists Association -> Journal of the Korea Real Estate Analysts Association KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-03-10 학술지명변경 외국어명 : 미등록 -> The Journal of Korea Real Estate Analysists Association KCI등재후보
      2006-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.64 0.64 0.75
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.81 0.85 1.108 0.13
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼