RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Synthesis, structural analysis, and characterization of various glycosides using glycosyltransferases from Leoconostoc mesenteroides = Leoconostoc mesenteroides 유래의 glycosyltransferase들을 이용한 다양한 배당체 합성, 구조분석 및 특성 연구

      한글로보기

      https://www.riss.kr/link?id=T11081893

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      Leuconostoc mesenteroides B-1299CB와 512FMC M1FT로부터 얻은 당전이 효소를 이용하여 EGCG, quercetin, arbutin 및 acarbose 배당체 화합물들을 합성하였다. 이들 화합물들은 각각 epigallocatechin gallate 7-O-a-D-glucopyranoside, epigallocatechin gallate 7,4"-O-a-D-glucopyranoside, epigallocatechin gallate 7,4'-O-a-D-glucopyranoside, epigallocatechin gallate 4"-O-a-D-glucopyranoside, epigallocatechin gallate 4'-O-a-D-glucopyranoside, quercetin-3-O--D-glucopyranoside, quercetin-4-O--D-glucopyranoside, 4-hydroxyphenyl β-isomaltoside와 4-hydroxyphenyl β-isomaltotrioside, 1І-β-D-fructofuranosyl-α-acarbose으로 구조해석하였다. 이들 배당체 화합물들은 항산화 활성에 있어서는 수용체 화합물보다는 낮았지만, 물에 대한 용해도, 항갈변 효과가 크게 증가되었으며, tyrosinase 와 당분해 관련 효소들의 저해 활성은 그대로 유지되고, 생체내 gluconeogenesis와 antioxidant 활성에 있어서는 수용체 보다 전반적으로 좋은 효과를 보였다. 앞으로 glcosyltransferases와 이들 산물들은 식품, 화장품 및 의약 산업에 응용될 수 있을 것으로 사료된다.
      번역하기

      Leuconostoc mesenteroides B-1299CB와 512FMC M1FT로부터 얻은 당전이 효소를 이용하여 EGCG, quercetin, arbutin 및 acarbose 배당체 화합물들을 합성하였다. 이들 화합물들은 각각 epigallocatechin gallate 7-O-a-D-glucopyr...

      Leuconostoc mesenteroides B-1299CB와 512FMC M1FT로부터 얻은 당전이 효소를 이용하여 EGCG, quercetin, arbutin 및 acarbose 배당체 화합물들을 합성하였다. 이들 화합물들은 각각 epigallocatechin gallate 7-O-a-D-glucopyranoside, epigallocatechin gallate 7,4"-O-a-D-glucopyranoside, epigallocatechin gallate 7,4'-O-a-D-glucopyranoside, epigallocatechin gallate 4"-O-a-D-glucopyranoside, epigallocatechin gallate 4'-O-a-D-glucopyranoside, quercetin-3-O--D-glucopyranoside, quercetin-4-O--D-glucopyranoside, 4-hydroxyphenyl β-isomaltoside와 4-hydroxyphenyl β-isomaltotrioside, 1І-β-D-fructofuranosyl-α-acarbose으로 구조해석하였다. 이들 배당체 화합물들은 항산화 활성에 있어서는 수용체 화합물보다는 낮았지만, 물에 대한 용해도, 항갈변 효과가 크게 증가되었으며, tyrosinase 와 당분해 관련 효소들의 저해 활성은 그대로 유지되고, 생체내 gluconeogenesis와 antioxidant 활성에 있어서는 수용체 보다 전반적으로 좋은 효과를 보였다. 앞으로 glcosyltransferases와 이들 산물들은 식품, 화장품 및 의약 산업에 응용될 수 있을 것으로 사료된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Various glycosides were synthesized by the reaction of acceptor reaction with sucrose and glycansucrases from Leuconostoc mesenteroides. Their structures were assigned as epigallocatechin gallate 7-O-a-D-glucopyranoside, epigallocatechin gallate 7,4"-O-a-D-glucopyranoside, epigallocatechin gallate 7,4'-O-a-D-glucopyranoside, epigallocatechin gallate 4"-O-a-D-glucopyranoside, epigallocatechin gallate 4'-O-a-D-glucopyranoside, epigallocatechin gallate 4¢,4"-O-a-D-glucopyranoside, quercetin-4-O--D-glucopyranoside, quercetin-3-O--D-glucopyranoside, 4-hydroxyphenyl β-isomaltoside, 4-hydroxyphenyl β-isomaltotrioside, 1І-β-D-fructofuranosyl-α-acarbose after 1H, 13C, HSQC, H-H COSY, HMBC analyses.
      Epigallocatechin gallate glucosides showed a different antioxidant effects according to their structures and showed the strong stability in a browning resistance than epigallocatechin gallate. Furthermore, the water solubility of the glucosides was 50-120 times higher than epigallocatechin gallate. Quercetin-4-O--D-glucopyranoside evidenced slower effects on DPPH radical scavenging activity (SC50 = 25.2 μM) than quercetin (SC50 = 6.5 μM). The water solubility was 12.7 mM, whereas the quercetin was barely soluble in water. The Ki value of quercetin-4-O--D-glucopyranoside (674.5 μM) was almost identical to that of quercetin (673.3 μM) with regard to tyrosinase inhibition effects. 4-Hydroxyphenyl β-isomaltoside exhibited slower effects on DPPH radical scavenging effects than arbutin and almost similar effects on tyrosinase inhibition effects. However, the glucoside showed better inhibitory effect than arbutin on MMP-1 production induced by UVB. 1І-β-D-fructofuranosyl-α-acarbose showed stronger effects on inhibition effect against α-amylase (porcin pancreatics) and amyloglucosidse (aspergillus niger), not α-glucosidase (baker’s yeast) and CGTase (Bacillus marcerans), comparing with that of acarbose.
      번역하기

      Various glycosides were synthesized by the reaction of acceptor reaction with sucrose and glycansucrases from Leuconostoc mesenteroides. Their structures were assigned as epigallocatechin gallate 7-O-a-D-glucopyranoside, epigallocatechin gallate 7,4"-...

      Various glycosides were synthesized by the reaction of acceptor reaction with sucrose and glycansucrases from Leuconostoc mesenteroides. Their structures were assigned as epigallocatechin gallate 7-O-a-D-glucopyranoside, epigallocatechin gallate 7,4"-O-a-D-glucopyranoside, epigallocatechin gallate 7,4'-O-a-D-glucopyranoside, epigallocatechin gallate 4"-O-a-D-glucopyranoside, epigallocatechin gallate 4'-O-a-D-glucopyranoside, epigallocatechin gallate 4¢,4"-O-a-D-glucopyranoside, quercetin-4-O--D-glucopyranoside, quercetin-3-O--D-glucopyranoside, 4-hydroxyphenyl β-isomaltoside, 4-hydroxyphenyl β-isomaltotrioside, 1І-β-D-fructofuranosyl-α-acarbose after 1H, 13C, HSQC, H-H COSY, HMBC analyses.
      Epigallocatechin gallate glucosides showed a different antioxidant effects according to their structures and showed the strong stability in a browning resistance than epigallocatechin gallate. Furthermore, the water solubility of the glucosides was 50-120 times higher than epigallocatechin gallate. Quercetin-4-O--D-glucopyranoside evidenced slower effects on DPPH radical scavenging activity (SC50 = 25.2 μM) than quercetin (SC50 = 6.5 μM). The water solubility was 12.7 mM, whereas the quercetin was barely soluble in water. The Ki value of quercetin-4-O--D-glucopyranoside (674.5 μM) was almost identical to that of quercetin (673.3 μM) with regard to tyrosinase inhibition effects. 4-Hydroxyphenyl β-isomaltoside exhibited slower effects on DPPH radical scavenging effects than arbutin and almost similar effects on tyrosinase inhibition effects. However, the glucoside showed better inhibitory effect than arbutin on MMP-1 production induced by UVB. 1І-β-D-fructofuranosyl-α-acarbose showed stronger effects on inhibition effect against α-amylase (porcin pancreatics) and amyloglucosidse (aspergillus niger), not α-glucosidase (baker’s yeast) and CGTase (Bacillus marcerans), comparing with that of acarbose.

      더보기

      목차 (Table of Contents)

      • Ⅰ. Introduction = 11
      • Ⅱ. Literature review = 14
      • 1. Glycosyltranferase = 14
      • A. Glucansucrases = 14
      • B. Levansucrase = 18
      • Ⅰ. Introduction = 11
      • Ⅱ. Literature review = 14
      • 1. Glycosyltranferase = 14
      • A. Glucansucrases = 14
      • B. Levansucrase = 18
      • C. Acceptor reaction mechanism of glycansucrase = 21
      • 2. Various acceptors and their glycosylation = 28
      • 3. Objectives of this study = 33
      • Ⅲ. Synthesis, structural analysis and characterization of epigallocatechin gallate glucosides using glucansucrase = 34
      • 1. Introduction = 34
      • 2. Materials and methods = 36
      • A. Materials = 36
      • B. Preparation of purified glucansucrase = 36
      • C. Glucansucrase activity assays = 36
      • D. Synthesis of EGCG glucosides = 37
      • E. Sephadex LH-20 column chromatography = 37
      • F. High performance liquid chromatography = 38
      • G. Matrix-assisted laser desorption ionization-time of flight analysis = 38
      • H. Structure determination using nuclear magnetic resonance = 39
      • I. DPPH radical scavenging effects = 39
      • J. Browning resistance effect = 40
      • K. Water solubility = 40
      • L. Animals and treatments = 41
      • M. Blood and tissue sampling = 41
      • N. Primer extension and real-time reverse transcription-PCR analysis = 42
      • O. Statistical analysis = 43
      • 3. Results and discussion = 45
      • A. Synthesis and purification of EGCG glucosides = 45
      • B. Structural determination of EGCG glucosides = 48
      • C. DPPH radical scavenging effects = 64
      • D. Browning resistant effects = 66
      • E. Water solubility = 66
      • F. Biochemical changes in rats = 67
      • G. Comparison of gluconeogenesis genes (PEPCK, FBP, and G6P) expression = 67
      • H. Comparison of antioxidant genes (CAT, SOD, and GSH) expression = 71
      • Ⅳ. Synthesis, structural analysis and characterization of quercetin glucosides using glucansucrase = 76
      • 1. Introduction = 76
      • 2. Materials and methods = 77
      • A. Materials = 77
      • B. Preparation of purified glucansucrase = 77
      • C. Synthesis of quercetin glucosides = 78
      • D. Purification by organic solvent partition = 78
      • E. High performance liquid chromatography = 79
      • F. Matrix-assisted laser desorption ionization-time of flight analysis = 79
      • G. Structure determination using nuclear magnetic resonance = 80
      • H. Antioxidant effects = 80
      • I. Water solubility = 81
      • J. Tyrosinase inhibition effect = 81
      • 3. Results and discussion = 83
      • A. Synthesis and purification of quercetin glucosides = 83
      • B. Structural determination of quercetin glucosides = 83
      • C. DPPH radical scavenging effects = 88
      • D. Tyrosinase inhibition effects = 90
      • E. Water solubility = 91
      • Ⅴ. Synthesis, structural analysis and characterization of arbutin glucosides using glucansucrase = 94
      • 1. Introduction = 94
      • 2. Materials and methods = 96
      • A. Materials = 96
      • B. Preparation of purified glucansucrase = 96
      • C. Synthesis of arbutin glucosides = 96
      • D. Bio gel P-2 column chromatography = 97
      • E. High performance liquid chromatography = 97
      • F. Matrix-assisted laser desorption ionization-time of flight analysis = 98
      • G. Structure determination using nuclear magnetic resonance = 98
      • H. Antioxidant effects = 98
      • I. Tyrosinase inhibitory effect = 99
      • J. UV irradiation and MMP-1 production test = 99
      • K. Enzyme-linked immunosolvent assay = 100
      • 3. Results and discussion = 101
      • A. Synthesis and purification of arbutin glucosides = 101
      • B. Structural determination of arbutin glucosides = 101
      • C. Antioxidant effects = 108
      • D. Tyrosinase Inhibitory Effect = 108
      • E. UV irradiation and MMP-1 production test = 112
      • Ⅵ. Synthesis, structural analysis and characterization of acarbose fructosides using levansucrase = 114
      • 1. Introduction = 114
      • 2. Materials and methods = 116
      • A. Materials = 116
      • B. Preparation of purified levansucrase = 116
      • C. Synthesis of acarbose fructosides = 117
      • D. Bio gel P-2 column chromatography = 117
      • E. High performance liquid chromatography = 118
      • F. Matrix-assisted laser desorption ionization-time of flight analysis = 118
      • G. Structure determination using nuclear magnetic resonance = 118
      • H. Inhibition effects on diabetes-related enzymes = 119
      • 3. Results and discussion = 120
      • A. Synthesis and purification of acarbose fructosides = 120
      • B. Structural determination of acarbose fructosides = 120
      • C. Inhibition effects on diabetes enzymes = 127
      • Ⅶ. Conclusions = 132
      • Ⅷ. References = 135
      • Abbreviation = 151
      • 국문초록 = 153
      • 감사의 글 = 155
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼