RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성 = Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis

      한글로보기

      https://www.riss.kr/link?id=A103031226

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      Xylan의 효소적 가수분해는 고부가가치 기능성 물질 또는 바이오에너지 생산을 위한 발효성 당을 얻는 가장 유용한 방법 중 하나이다. endo-${\beta}$-Xylanase는 xylan 주사슬 내부의 ${\beta}$-1,4-결합...

      Xylan의 효소적 가수분해는 고부가가치 기능성 물질 또는 바이오에너지 생산을 위한 발효성 당을 얻는 가장 유용한 방법 중 하나이다. endo-${\beta}$-Xylanase는 xylan 주사슬 내부의 ${\beta}$-1,4-결합을 가수분해하여 xylobiose, xylotriose를 포함한 다양한 XOS를 생산하는 핵심 효소이다. 이들 효소 중에서 glucuronoxylanase GH30은 methylglucuronic acid가 측쇄에 수식된 xylan에 특이적으로 작용한다. 본 연구에서는 Paenibacillus amylolyticus KCTC 3005에서 유래한 2종의 xylan 가수분해효소(PaXN_10과 PaGuXN_30) 유전자를 클로닝하고, Escherichia coli에서 각각 발현시켰다. PaXN_10 (38.7 kDa)은 ${\beta}$-xylanase GH10 계열, PaGuXN_30 (58.5 kDa)은 glucuronoxylanase GH30에 해당하는 효소이며, $50^{\circ}C$와 pH 7.0에서 최대 활성을 나타내었다. 가수분해 특성 연구를 통해 P. amylolyticus가 목질계 glucuronoxylan을 분해하는 효소 시스템을 제안하였다. 세포 외로 분비되는 PaGuXN_30은 glucuroxylan을 가수분해하여 methylglucuronic acid 측쇄를 가지는 다양한 aldouronic acid mixtures를 생성하며, 이러한 분해산물은 세포 내로 이동하여 PaXN_GH10에 의해 xylose, xylobiose와 같은 저분자 XOS로 분해되어 세포 내 대사경로에 이용될 수 있다. 또한 이들 효소의 가수분해특성을 이용하여 다양한 탄수화물 소재 생산이 가능할 것으로 기대한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$...

      The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

      더보기

      참고문헌 (Reference)

      1 Falck, P., "Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis" 61 : 7333-7340, 2013

      2 Sunna, A., "Xylanolytic enzymes from fungi and bacteria" 17 : 39-67, 1997

      3 Collins, T., "Xylanases, xylanase families and extremophilic xylanases" 29 : 3-23, 2005

      4 Miller, G. L, "Use of dinitrosalicylic acid reagent for determination of reducing sugar" 31 : 426-428, 1959

      5 Andrews, S. R., "The use of forced protein evolution to investigate and improve stability of family 10 xylanases: The production of Ca 2+-independent stable xylanases" 279 : 54369-54379, 2004

      6 Gallardo, Ó., "Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution" 285 : 2721-2733, 2010

      7 Chaikumpollert, O., "Structural elucidation of hemicelluloses from Vetiver grass" 57 : 191-196, 2004

      8 Ihsanawati, Kumasaka, T., "Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8" 61 : 999-1009, 2005

      9 Valenzuela, S. V., "Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis" 58 : 4814-4818, 2010

      10 St. John, F. J., "Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization" 72 : 1496-1506, 2006

      1 Falck, P., "Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis" 61 : 7333-7340, 2013

      2 Sunna, A., "Xylanolytic enzymes from fungi and bacteria" 17 : 39-67, 1997

      3 Collins, T., "Xylanases, xylanase families and extremophilic xylanases" 29 : 3-23, 2005

      4 Miller, G. L, "Use of dinitrosalicylic acid reagent for determination of reducing sugar" 31 : 426-428, 1959

      5 Andrews, S. R., "The use of forced protein evolution to investigate and improve stability of family 10 xylanases: The production of Ca 2+-independent stable xylanases" 279 : 54369-54379, 2004

      6 Gallardo, Ó., "Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution" 285 : 2721-2733, 2010

      7 Chaikumpollert, O., "Structural elucidation of hemicelluloses from Vetiver grass" 57 : 191-196, 2004

      8 Ihsanawati, Kumasaka, T., "Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8" 61 : 999-1009, 2005

      9 Valenzuela, S. V., "Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis" 58 : 4814-4818, 2010

      10 St. John, F. J., "Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization" 72 : 1496-1506, 2006

      11 Harada, K. M., "Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicellulose" 163 : 293-298, 2008

      12 Fukumura, M., "Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product" 59 : 40-46, 1995

      13 Ahmed, S., "Molecular cloning of fungal xylanases: An overview" 84 : 19-35, 2009

      14 Do, T. T., "Molecular characterization of a glycosyl hydrolase family 10xylanase from Aspergillus niger" 92 : 196-202, 2013

      15 Valenzuela, S. V., "Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydratebinding module" 78 : 3923-3931, 2012

      16 Vršanská, M., "Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi" 274 : 1666-1677, 2007

      17 Juturu, V., "Microbial xylanases: engineering, production and industrial applications" 30 : 1219-1227, 2012

      18 Moon, J. S., "In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides" 131 : 50-56, 2015

      19 Saha, B. C, "Hemicellulose bioconversion" 30 : 279-291, 2003

      20 Hye-Jeong Kang, "Expression of Cyclomaltodextrinase Gene from Bacillus halodurans C-125 and Characterization of Its Multisubstrate Specificity" 한국식품과학회 18 (18): 776-781, 2009

      21 Fujimoto, Z., "Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86" 279 : 9606-9614, 2004

      22 Waeonukul Rattiya, "Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-β-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme" 한국미생물·생명공학회 19 (19): 277-285, 2009

      23 Blanco, A., "Cloning of a Bacillus sp. BP-23 gene encoding a xylanase with high activity against aryl xylosides" 137 : 285-290, 1996

      24 Uday, U. S. P., "Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth" 82 : 1041-1054, 2016

      25 Teleman, A., "Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy" 329 : 807-815, 2000

      26 Gallardo, O., "Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases" 61 : 226-233, 2003

      27 St. John, F. J., "Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan" 188 : 8617-8626, 2006

      28 Fukuda, M., "Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes" 192 : 2210-2219, 2010

      29 Wang, W., "Biochemical and structural characterization of a five-domain GH115 α-glucuronidase from the marine bacterium Saccharophagus degradans 2-40T" 291 : 14120-14133, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-02 학술지명변경 외국어명 : The Korean Journal of Microbiology -> Korean Journal of Microbiology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.21 0.21 0.21
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.48 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼