RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion

      한글로보기

      https://www.riss.kr/link?id=A105166547

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic d...

      Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic digestion system. Methods: Anaerbic digestion test was performed using a lab scale batch reactor at $35^{\circ}C$ for six different feed to inoculum (F/I) ratios (0.50, 0.72, 1.14, 1.50, 2.14 and 3.41), three food waste to swine manure ratios (100:0, 60:40 and 40:60) with two different loading concentrations (10g VS/L and 30g VS/L). Results: For food waste only, the highest biogas yield of 1008 mL/gVS was obtained at 0.50 of F/I. For the co-digestion of food waste and swine manure mixture, the highest biogas yield of 1148 mL/gVS was obtained at a mixing ratio of 40:60 with loading concentration of 10g VS/L. Conclusions: F/I ratio for the food waste only, mixing ratio of food waste and swine manure, and co-substrate loading rate affected the biogas production rate. For the low loading rate, there was not so much difference according to the mixing ratio of food waste and swine manure, but for the high loading rate higher biogas yield was acquired for the co-digestion of food waste and swine manure than for the food waste alone (mixing ratio, 100:0).

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼