RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      국소 문맥과 공기 정보를 이용한 비교사 학습 방식의 명사 의미 중의성 해소 = Unsupervised Noun Sense Disambiguation using Local Context and Co-occurrence

      한글로보기

      https://www.riss.kr/link?id=A82294524

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사...

      본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사는 그 의미가 유사하다는 직관을 바탕으로 대상 명사의 중의성 해소를 위해 대상명사를 포함하는 국소문맥과 동일한 국소문맥을 갖는 단어를 단서로 사용함으로써 학습 자료의 활용도를 높일 수 있고 빈도수가 적은 단어의 의미 중의성도 해결할 수 있으며, 용언의 확장을 통해 자료 부족 현상을 줄일 수 있다.
      대상 명사는 동일한 국소문맥에 의한 단서들과의 최대 유사도 계산을 통해 그 의미가 결정된다. 두 단어간의 유사도는 WordNet으로부터 차용한 의미 계층 구조에서 두 단어가 가지는 개념 사이의 거리에 의해 계산된다. 최대 유사도를 계산하는 과정에서는 단서들의 중의성을 점차 줄여 나감으로써 유사도 계산의 속도를 향상시킬 수 있다. 대상 명사가 둘 이상의 국소문맥을 가질 때에는 각 국소문맥의 종류에 따른 가중치를 부여하여 국소문맥의 종류에 따른 의미제약의 차이를 구현하였다. 또 하나의 지식원으로서 사전 정의와 예문으로부터 공기정보를 얻고, 이를 국소문맥을 보완하기 위한 지식으로 사용하여 최선의 의미를 선택할 수 있도록 하였다.
      실험을 통해, 제안하는 방법은 국소 문맥의 적용률이 높고, 공기 정보는 국소 문맥과 상호 보완적으로 사용되어 정확도를 높일 수 있음을 보였다. 본 방법을 실험한 결과, 사용된 단어의 의미 중의성이 크면서도, 기존의 의미 부착 말뭉치를 이용한 교사 학습 방식의 성능보다도 높은 정확도(89.8%)를 얻을 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, in order to disambiguate Korean noun word sense, we define a local context and explain how to extract it from a raw corpus. Following the intuition that two different nouns are likely to have similar meanings if they occur in the same...

      In this paper, in order to disambiguate Korean noun word sense, we define a local context and explain how to extract it from a raw corpus.
      Following the intuition that two different nouns are likely to have similar meanings if they occur in the same local context, we use, as a clue, the word that occurs in the same local context where the target noun occurs. This method increases the usability of extracted knowledge and makes it possible to disambiguate the sense of infrequent words. And we can overcome the data sparseness problem by extending the verbs in a local context.
      The sense of a target noun is decided by the maximum similarity to the clues learned previously. The similarity between two words is computed by their concept distance in the sense hierarchy borrowed from WordNet. By reducing the multiplicity of clues gradually in the process of computing maximum similarity, we can speed up for next time calculation.
      When a target noun has more than two local contexts, we assign a weight according to the type of each local context to implement the differences according to the strength of semantic restriction of local contexts. As another knowledge source, we get a co-occurrence information from dictionary definitions and example sentences about the target noun. This is used to support local contexts and helps to select the most appropriate sense of the target noun.
      Through experiments using the proposed method, we discovered that the applicability of local contexts is very high and the co-occurrence information can supplement the local context for the precision. In spite of the high multiplicity of the target nouns used in our experiments, we can achieve higher performance (89.8%) than the supervised methods which use a sense-tagged corpus.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 본 WSD 시스템 구성
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 본 WSD 시스템 구성
      • 4. WordNet을 이용한 의미 계층 구조
      • 5. 중의성 해소에 이용할 지식원
      • 6. 의미 결정 알고리즘
      • 7. 실험 및 결과 분석
      • 8. 결론 및 향후 계획
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼