RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Genomics of altitude‐associated wing shape in two tropical butterflies

      한글로보기

      https://www.riss.kr/link?id=O108195133

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Understanding how organisms adapt to their local environment is central to evolution. With new whole‐genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common‐garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation‐associated wing aspect ratio differences are maintained. Genome‐wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within‐species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
      번역하기

      Understanding how organisms adapt to their local environment is central to evolution. With new whole‐genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming...

      Understanding how organisms adapt to their local environment is central to evolution. With new whole‐genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common‐garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation‐associated wing aspect ratio differences are maintained. Genome‐wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within‐species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼