Background: Activating the immune system for therapeutic benefit has long been a goal in immunology, especially in cancer treatment, but the low immunogenicity of antitumor vaccines remains a limiting factor in the fight against malignant neoplasms. T...
Background: Activating the immune system for therapeutic benefit has long been a goal in immunology, especially in cancer treatment, but the low immunogenicity of antitumor vaccines remains a limiting factor in the fight against malignant neoplasms. The increase in the immunogenicity of weak antigens using biodegradable polymers, such as chitosan, has been observed in the field of cancer immunotherapy. However, the effects of the vaccine using a combination of tumor cells and a thermoreversible delivery system based on chitosan in bladder cancer models, mainly using the intravesical route to stimulate the antitumor immune response, are unknown. We propose to evaluate the efficacy of a polymeric gel matrix (TPG) formed by poloxamer 407 and chitosan, associated with MB49 cells, as an intravesical antitumor vaccine using a C57BL/6 murine model of bladder urothelial carcinoma. The effectiveness of immunization was analyzed with the formation of three experimental groups: Control, TPG and TPG + MB49. In the vaccination phase, the TPG + MB49 group underwent a traumatic injury to the bladder wall with immediate intravesical instillation of the vaccine compound containing MB49 cells embedded in TPG. The TPG group was subjected to the same procedures using the compound containing the gel diluted in medium, and the control group using only the medium. After 21 days, the animals were challenged with tumor induction.
Results: In vitro tests showed loss of viability and inability to proliferate after exposure to TPG. In vivo tests showed that animals previously immunized with TPG + MB49 had higher cumulative survival, as well as significantly lower bladder weight and size in contrast to the other two groups that did not show a statistically different tumor evolution.
In addition, the splenocytes of these animals also showed a higher rate of antitumor cytotoxicity in relation to the TPG and control groups.
Conclusions: We can conclude that MB49 cells embedded in a polymeric thermoreversible gel matrix with chitosan used in the form of an intravesical vaccine are able to stimulate the immune response and affect the development of the bladder tumor in an orthotopic and syngeneic C57BL/6 murine model.