RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어 = Speed Control of Induction Motor Using Self-Learning Fuzzy Controller

      한글로보기

      https://www.riss.kr/link?id=A106708092

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문은 신경회로망에 의한 퍼지제어기의 소속함수를 자동동조하는 방법을 제시하였다. 신경회로망 에뮬레이터는 퍼지제어기의 소속함수와 퍼지규칙을 재구성하는 경로를 제공하며, 재구성된 퍼지제어기는 유도전동기의 속도제어를 위해 사용한다. 따라서, 연산 시간과 시스템 성능의 관점에서 제안된 방법은 전동기 상수가 변동될 시에도 기존의 제어 방식보다 우수하다. 공간전압벡터 PWM 발생을 위한 고속연산을 수행하고 자기학습형 퍼지제어기 알고리즘을 구현하기 위해서 32비트 마이크로프로세서인 DSP(TMS320C31)을 사용하였다. 컴퓨터 시뮬레이션과 실험 결과를 통하여, 제안된 방식이 PI 제어기나 기존의 퍼지제어기보다 향상된 제어 성능을 보일 수 있음을 확인하였다.
      번역하기

      본 논문은 신경회로망에 의한 퍼지제어기의 소속함수를 자동동조하는 방법을 제시하였다. 신경회로망 에뮬레이터는 퍼지제어기의 소속함수와 퍼지규칙을 재구성하는 경로를 제공하며, 재...

      본 논문은 신경회로망에 의한 퍼지제어기의 소속함수를 자동동조하는 방법을 제시하였다. 신경회로망 에뮬레이터는 퍼지제어기의 소속함수와 퍼지규칙을 재구성하는 경로를 제공하며, 재구성된 퍼지제어기는 유도전동기의 속도제어를 위해 사용한다. 따라서, 연산 시간과 시스템 성능의 관점에서 제안된 방법은 전동기 상수가 변동될 시에도 기존의 제어 방식보다 우수하다. 공간전압벡터 PWM 발생을 위한 고속연산을 수행하고 자기학습형 퍼지제어기 알고리즘을 구현하기 위해서 32비트 마이크로프로세서인 DSP(TMS320C31)을 사용하였다. 컴퓨터 시뮬레이션과 실험 결과를 통하여, 제안된 방식이 PI 제어기나 기존의 퍼지제어기보다 향상된 제어 성능을 보일 수 있음을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.
      번역하기

      In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the re...

      In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼