RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A Survey of Physics-Informed Neural Networks in Vision Generation

      한글로보기

      https://www.riss.kr/link?id=A109203317

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The field of computer vision has seen remarkable advancements in the domain of generative tasks. These advancements have facilitated the creation of diverse images from complex input data. However, traditional data-driven generative models often fall ...

      The field of computer vision has seen remarkable advancements in the domain of generative tasks. These advancements have facilitated the creation of diverse images from complex input data. However, traditional data-driven generative models often fall short in terms of robustness and interpretability, particularly when faced with the challenges of high-dimensional image data and noisy or insufficient training datasets. These limitations are especially problematic in tasks requiring the simulation of physical phenomena, as these models typically generate outputs that may not be physically plausible.
      Physics-Informed Neural Networks (PINNs) have emerged as a potent solution to these deficiencies, integrating physical laws directly into the learning process to enhance both the accuracy and generalizability of model predictions. This paper explores the application of PINNs in various computer vision generation tasks, highlighting their utility in generating visually plausible content that adheres to realistic physical constraints. This review explores how incorporating physical laws into GANs and DDPMs, as illustrated in various research studies, addresses the shortcomings of traditional generative models, facilitating more dependable and physically accurate visual simulations across a range of applications. The merging of physics and machine learning in these instances not only stabilizes the training processes but also enhances the fidelity and robustness of generated images. Such insights underscore the broad potential of physics-informed methodologies in advancing computational vision systems, showing that these approaches are instrumental in refining the capabilities of generative models.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼