RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Bayesian Learning through Weight of Listener’s Prefered Music Site for Music Recommender System

      한글로보기

      https://www.riss.kr/link?id=A101955760

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Along with the spread of digital music and recent growth in the digital music industry, the demands for music recommender are increasing. These days, listeners have increasingly preferred to digital real-time streamlining and downloading to listen t...

      Along with the spread of digital music and recent growth in the digital music industry, the demands for music recommender are increasing. These days, listeners have increasingly preferred to digital real-time streamlining and downloading to listen to music because it is convenient and affordable for the listeners to do that. We use Bayesian learning through weight of listener’s prefered music site such as Melon, Billboard, Bugs Music, Soribada, and Gini. We reflect most popular current songs across all genres and styles for music recommender system using user profile. It is necessary for us to make the task of preprocessing of clustering the preference with weight of listener’s preferred music site with popular music charts. We evaluated the proposed system on the data set of music sites to measure its performance. We reported some of the experimental result, which is better performance than the previous system.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Related works
      • 2.1 Collaborative Filtering(CF)
      • 2.2 Clustering
      • Abstract
      • 1. Introduction
      • 2. Related works
      • 2.1 Collaborative Filtering(CF)
      • 2.2 Clustering
      • 2.3 Bayesian Networks(BNs)
      • 3. Our proposal for a Music Recommender System
      • 3.1 Clustering with Weight of Listener’s Prefered Music Site
      • 4. The Environment of Implementation and Experiment and Evaluation
      • 4.1. Experimental Data for Evaluation
      • 4.2 Experiment and Evaluation
      • 5. Conclusions
      • References
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼