RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges

      한글로보기

      https://www.riss.kr/link?id=O112136094

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Few studies have addressed the evolutionary history of tree species from African savannahs. Afzelia contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A. quanzensis in the Zambezian region. We aimed to infer whether these species underwent range fragmentation and/or demographic changes, possibly reflecting how savannahs responded to Quaternary climate changes.
      We characterized the genetic diversity and structure of these species across their distribution ranges using nuclear microsatellites (SSRs) and genotyping‐by‐sequencing (GBS) markers. Six SSR loci were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2800 high‐quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana individuals.
      Both species appeared to be mainly outcrossing. The kinship between individuals decayed with the logarithm of the distance at similar rates across species and markers, leading to relatively small Sp statistics (0.0056 for SSR and 0.0054 for SNP in A. africana, 0.0075 for SSR in A. quanzensis). The patterns were consistent with isolation by distance expectations in the absence of large‐scale geographic gradients. Bayesian clustering of SSR genotypes did not detect genetic clusters within species. In contrast, SNP data resolved intraspecific genetic clusters in A. africana, illustrating the higher resolving power of GBS. However, these clusters revealed low levels of differentiation and no clear geographical entities, so that they were interpreted as resulting from the isolation by distance pattern rather than from past population fragmentation.
      These results suggest that populations have remained connected throughout the large, continuous savannah landscapes. The absence of clear phylogeographic discontinuities, also found in a few other African savannah trees, indicates that their distribution ranges have not been significantly fragmented during the climatic oscillations of the Pleistocene, in contrast to patterns commonly found in African rainforest trees.
      번역하기

      Few studies have addressed the evolutionary history of tree species from African savannahs. Afzelia contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A...

      Few studies have addressed the evolutionary history of tree species from African savannahs. Afzelia contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A. quanzensis in the Zambezian region. We aimed to infer whether these species underwent range fragmentation and/or demographic changes, possibly reflecting how savannahs responded to Quaternary climate changes.
      We characterized the genetic diversity and structure of these species across their distribution ranges using nuclear microsatellites (SSRs) and genotyping‐by‐sequencing (GBS) markers. Six SSR loci were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2800 high‐quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana individuals.
      Both species appeared to be mainly outcrossing. The kinship between individuals decayed with the logarithm of the distance at similar rates across species and markers, leading to relatively small Sp statistics (0.0056 for SSR and 0.0054 for SNP in A. africana, 0.0075 for SSR in A. quanzensis). The patterns were consistent with isolation by distance expectations in the absence of large‐scale geographic gradients. Bayesian clustering of SSR genotypes did not detect genetic clusters within species. In contrast, SNP data resolved intraspecific genetic clusters in A. africana, illustrating the higher resolving power of GBS. However, these clusters revealed low levels of differentiation and no clear geographical entities, so that they were interpreted as resulting from the isolation by distance pattern rather than from past population fragmentation.
      These results suggest that populations have remained connected throughout the large, continuous savannah landscapes. The absence of clear phylogeographic discontinuities, also found in a few other African savannah trees, indicates that their distribution ranges have not been significantly fragmented during the climatic oscillations of the Pleistocene, in contrast to patterns commonly found in African rainforest trees.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼