In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based o...
In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.