RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Rotordynamic characteristics of a novel pocket damper seal with self-regulated injection

      한글로보기

      https://www.riss.kr/link?id=A107804447

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The conventional fully partitioned pocket damper seal (FPDS) was improved by introducing several nozzles on the first seal tooth, which generates a reverse injection fluid suppressing the cavity flow in the circumferential direction. Computational flu...

      The conventional fully partitioned pocket damper seal (FPDS) was improved by introducing several nozzles on the first seal tooth, which generates a reverse injection fluid suppressing the cavity flow in the circumferential direction. Computational fluid dynamics (CFD) models of the conventional FPDS and current novel FPDS were established. An infinitesimal theory was employed to identify the rotordynamic coefficient of the FPDS. The influence of nozzle types (negative, straight, positive), inlet/outlet areas, deflection angles (θ) on the rotordynamic performance was comprehensively analyzed. It was found that reducing the circumferential flow in the first seal cavity is crucial for increasing the stability of the FPDS. A negative nozzle angle can restrict the circumferential flow effectively and significantly improve the effective damping and system stability. The crossover frequency for the novel FPDS with θ = -10° is ~62 Hz, which is much lower than that for the conventional FPDS (~85 Hz). The increasing inlet/outlet area ratio of the nozzle can also enhance the seal stability. Increasing the negative nozzle angle (θ = none, -10°, -15°, -20°) can effectively increase the effective damping and reduce the crossover frequency from ~85 Hz to ~38 Hz. However, the novel FPDS with three kinds of nozzles shows a slight increase (< 2.5 %) in the leakage flow rate compared with the conventional FPDS.

      더보기

      참고문헌 (Reference)

      1 D. W. Childs, "Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis" John Wiley & Sons 1993

      2 E. A. Memmott, "Tilt pad seal and damper bearing applications to high speed and high-density centrifugal compressor" 585-590, 1990

      3 B. H. Ertas, "The influence of same-sign crosscoupled stiffness on rotordynamics" 129 (129): 24-31, 2007

      4 A. Untaroiu, "The effects of fluid preswirl and swirl brakes design on the performance of labyrinth seals" 140 (140): 082503-, 2018

      5 J. M. Vance, "Test results of a new damper seal for vibration reduction in turbomachinery" 118 (118): 843-846, 1996

      6 R. E. Chupp, "Sealing in turbomachinery" 22 (22): 313-349, 2006

      7 D. W. Childs, "Rotordynamic performance of a negative-swirl brake for a tooth-onstator labyrinth seal" 138 (138): 062505-, 2016

      8 B. H. Ertas, "Rotordynamic force coefficients of pocket damper seals" Texas A&M University 2005

      9 B. H. Ertas, "Rotordynamic force coefficients of pocket damper seals" 128 (128): 725-737, 2006

      10 B. H. Ertas, "Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio" 134 (134): 042503-, 2012

      1 D. W. Childs, "Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis" John Wiley & Sons 1993

      2 E. A. Memmott, "Tilt pad seal and damper bearing applications to high speed and high-density centrifugal compressor" 585-590, 1990

      3 B. H. Ertas, "The influence of same-sign crosscoupled stiffness on rotordynamics" 129 (129): 24-31, 2007

      4 A. Untaroiu, "The effects of fluid preswirl and swirl brakes design on the performance of labyrinth seals" 140 (140): 082503-, 2018

      5 J. M. Vance, "Test results of a new damper seal for vibration reduction in turbomachinery" 118 (118): 843-846, 1996

      6 R. E. Chupp, "Sealing in turbomachinery" 22 (22): 313-349, 2006

      7 D. W. Childs, "Rotordynamic performance of a negative-swirl brake for a tooth-onstator labyrinth seal" 138 (138): 062505-, 2016

      8 B. H. Ertas, "Rotordynamic force coefficients of pocket damper seals" Texas A&M University 2005

      9 B. H. Ertas, "Rotordynamic force coefficients of pocket damper seals" 128 (128): 725-737, 2006

      10 B. H. Ertas, "Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio" 134 (134): 042503-, 2012

      11 Z. G. Li, "Numerical investigations on the leakage and rotordynamic characteristics of pocket damper seals: part II: effects of partition wall type, partition wall number, and cavity depth" 137 (137): 032504-, 2015

      12 Z. G. Li, "Numerical investigations on the leakage and rotordynamic characteristics of pocket damper seals: part I. Effects of pressure ratio, rotational speed, and inlet preswirl" 137 (137): 032503-, 2015

      13 Z. G. Li, "Numerical investigation on the leakage and static stability characteristics of pocket damper seals at high eccentricity ratios" 2017

      14 Z. G. Li, "Numerical comparison of rotordynamic characteristics for a fully partitioned pocket damper seal and a labyrinth seal with high positive and negative inlet preswirl" 138 (138): 042505-, 2016

      15 A. M. Gamal, "Leakage and rotordynamic effects of pocket damper seals and see-through labyrinth seals" Texas A&M University 2007

      16 J. Yang, "Leakage and dynamic force coefficients of a pocket damper seal operating under a wet gas condition: tests vs. predictions" 2019

      17 G. Kirk, "Labyrinth seal analysis for centrifugal compressor design - theory and practice" 14-17, 1986

      18 Z. G. Li, "Investigations on the rotordynamic coefficients of pocket damper seals using the multifrequency, one-dimensional, whirling orbit model and RANS solutions" 134 (134): 102510-, 2012

      19 C. Griebel, "Impact analysis of pocket damper seal geometry variations on leakage performance and rotordynamic force coefficients using computational fluid dynamics" 141 (141): 041024-, 2019

      20 A. M. Gamal, "High-pressure pocket damper seals: leakage rates and cavity pressures" 129 (129): 826-834, 2007

      21 H. Benckert, "Flow induced spring coefficients of labyrinth seals for application in rotor dynamics" Texas A&M University 189-212, 1980

      22 E. A. Soto, "Experimental rotordynamic coefficient results for (a) a labyrinth seal with and without shunt injection and (b) a honeycomb seal" 121 (121): 153-159, 1999

      23 D. Ransom, "Experimental force coefficients for a two-bladed labyrinth seal and a four-pocket damper seal" 121 (121): 370-376, 1999

      24 J. M. Li, "Experimental evaluation of slotted pocket gas damper seals on a rotating test rig" 1125-1138, 2002

      25 J. M. Vance, "Effect of frequency and design parameters on pocket damper seal performance" 799-807, 2002

      26 J. M. Li, "Dynamic force coefficients of a multiple-blade, multiple-pocket gas damper seal: test results and predictions" 122 (122): 317-322, 2000

      27 J. M. Li, "Comparison of predictions with test results for rotordynamic coefficients of a four-pocket gas damper seal" 121 (121): 363-369, 1999

      28 W. F. Zhang, "Application of a novel rotordynamic identification method for annular seals with arbitrary elliptical orbits and eccentricities" 141 (141): 091016-, 2019

      29 "ANSYS CFX-Solver Theory Guide, Release 11.0"

      30 F. Cangioli, "A novel bulk-flow model for pocket damper seals" 2019

      31 J. M. Vance, "A new damper seal for turbomachinery" 139-148, 1993

      32 J. M. Li, "A bulk-flow analysis of multiple-pocket gas damper seals" 121 (121): 355-363, 1999

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼