RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

      한글로보기

      https://www.riss.kr/link?id=A106232179

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosiv...

      This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

      더보기

      참고문헌 (Reference)

      1 Liu, G. R., "Smoothed Particle Hydrodynamics: a Meshfree Particle Method" World Scientific 2003

      2 Toro, E. F., "Riemann Solvers and Numerical Methods for Fluid Dynamics" Springer 1997

      3 Boer, A. d., "Review of coupling methods for nonmatching meshes" 196 : 1515-1525, 2007

      4 Shin, Y. S., "Response of Marine Structures to Underwater Explosion"

      5 Chen, T. J., "On the Riemann problem for liquid or gas-liquid media" 18 : 529-541, 1994

      6 Belytschko, T., "Nonlinear Finite Elements for Continua and Structures" WILEY 2000

      7 Xie, W. F., "Multiphase modeling of dynamic fluidstructure interaction during close-in explosion" 74 (74): 1019-1043, 2007

      8 Osher, S., "Level Set Methods and Dynamic Implicit Surfaces" Springer 1999

      9 Liu, T. G., "Isentropic one-fluid modeling of unsteady cavitating flow" 201 : 80-108, 2004

      10 Alia, A., "High explosive simulation using multi-material formulations" 26 : 1032-1042, 2006

      1 Liu, G. R., "Smoothed Particle Hydrodynamics: a Meshfree Particle Method" World Scientific 2003

      2 Toro, E. F., "Riemann Solvers and Numerical Methods for Fluid Dynamics" Springer 1997

      3 Boer, A. d., "Review of coupling methods for nonmatching meshes" 196 : 1515-1525, 2007

      4 Shin, Y. S., "Response of Marine Structures to Underwater Explosion"

      5 Chen, T. J., "On the Riemann problem for liquid or gas-liquid media" 18 : 529-541, 1994

      6 Belytschko, T., "Nonlinear Finite Elements for Continua and Structures" WILEY 2000

      7 Xie, W. F., "Multiphase modeling of dynamic fluidstructure interaction during close-in explosion" 74 (74): 1019-1043, 2007

      8 Osher, S., "Level Set Methods and Dynamic Implicit Surfaces" Springer 1999

      9 Liu, T. G., "Isentropic one-fluid modeling of unsteady cavitating flow" 201 : 80-108, 2004

      10 Alia, A., "High explosive simulation using multi-material formulations" 26 : 1032-1042, 2006

      11 Wardlaw, A. B., "Fluid-structure interaction mechanisms for close-in explosions" 7 : 265-275, 2007

      12 Leveque, R. J., "Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics"

      13 Donea, J., "Finite Element Methods for Flow Problems" WILEY 2003

      14 Sandusky, H., "Dynamic measurements of plastic deformation in a water-filled aluminum tube in response to detonation of a small explosives charge" 6 : 125-132, 1999

      15 Li, B. Q., "Discontinuous Finite Element in Fluid Dynamics and Heat Transfer" Springer 2006

      16 Broglia, R., "Development and Validation of an Axisymmetric Navier-stokes Solver for Hypersonic Flows" Von Karman Institute for Fluid Dynamics 1995

      17 Cooke, C. H., "Continuous front tracking with subcell resolution" 6 (6): 269-282, 1991

      18 Xie, W. F., "Application of a one-fluid model for large scale homogeneous unsteady cavitation : the modified Schmidt model" 35 : 1177-1192, 2006

      19 Zhao, Guo-Zhong, "An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate" 222 (222): 020202-1-020202-14, 2013

      20 Cockburn, B., "An Introduction to the Discontinuous Galerkin Method for Convection-dominated Problems" Springer Berlin 1998

      21 Linder, C., "An Arbitrary Lagrangian-eulerian Finite Element Formulation for Dynamics and Finite Strain Plasticity Models" University of Stuttgart 2003

      22 Souli, M., "ALE formulation for fluid-structure interaction problems" 190 : 659-675, 2000

      23 Fedkiw, R. P., "A non-oscillatory Eulerian approach to interfaces in multimaterial flows(The Ghost Fluid Method)" 152 : 457-492, 1999

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 SCIE 등재 (등재유지) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-01-01 평가 SCIE 등재 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.56 0.18 0.54
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.49 0.47 0.475 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼