RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard

      한글로보기

      https://www.riss.kr/link?id=A109118300

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Objective: In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education. Methods: Ou...

      Objective: In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
      Methods: Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
      Results: In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification.
      Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
      Conclusion: ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼