RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance

      한글로보기

      https://www.riss.kr/link?id=O120359439

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased. In this work, experimental evidence is provided that interfacial defects can enhance the TBC across interfaces through the emergence of unique high‐frequency vibrational modes that arise from atomic mass defects at the interface with relatively small masses. Ultrahigh TBC is demonstrated at amorphous SiOC:H/SiC:H interfaces, approaching 1 GW m−2 K−1 and are further increased through the introduction of nitrogen defects. The fact that disordered interfaces can exhibit such high conductances, which can be further increased with additional defects, offers a unique direction to manipulate heat transfer across materials with high densities of interfaces by controlling and enhancing interfacial thermal transport.
      A new regime of heat transfer in amorphous nanolaminates and disordered solids in general is reported, in which interfacial modes introduced through defects in the vicinity of the interface between two amorphous solids lead to ultrahigh thermal conductance across these disordered interfaces. This work demonstrates the significance of interfacial modes on heat transfer in nanolaminates with high density of interfaces.
      번역하기

      The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have sugges...

      The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased. In this work, experimental evidence is provided that interfacial defects can enhance the TBC across interfaces through the emergence of unique high‐frequency vibrational modes that arise from atomic mass defects at the interface with relatively small masses. Ultrahigh TBC is demonstrated at amorphous SiOC:H/SiC:H interfaces, approaching 1 GW m−2 K−1 and are further increased through the introduction of nitrogen defects. The fact that disordered interfaces can exhibit such high conductances, which can be further increased with additional defects, offers a unique direction to manipulate heat transfer across materials with high densities of interfaces by controlling and enhancing interfacial thermal transport.
      A new regime of heat transfer in amorphous nanolaminates and disordered solids in general is reported, in which interfacial modes introduced through defects in the vicinity of the interface between two amorphous solids lead to ultrahigh thermal conductance across these disordered interfaces. This work demonstrates the significance of interfacial modes on heat transfer in nanolaminates with high density of interfaces.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼