RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Substituent‐Induced Deformed Ni–Porphyrin as an Electrocatalyst for the Electrochemical Conversion of Water into Dioxygen

      한글로보기

      https://www.riss.kr/link?id=O119032158

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The electrochemical water oxidation ability of complexes 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) in the oxygen evolution reaction (OER) have been investigated in an alkaline medium. Complex B was found to be kinetically and thermodynamically more active than complex A. The overpotential and Tafel slope of complex B are lower than those of complex A by 30 mV and around 45 mV/decade, respectively, which supports the higher activity of B. Moreover, stability tests endorse the sustainability of both samples under alkaline conditions. It has been found that the 3,5‐di‐tert‐butylphenyl substituent in B plays a decisive role in achieving a better OER onset potential and current than that obtained with A, which is a result of the modulation of the structural parameters of B. Furthermore, the measured OER activities of A and B have been correlated with their molecular arrangement as well as differences in their bonding characteristics and dipole moments. For further insight, the obtained results have been confirmed by a theoretical study.
      The activities of 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) complexes in the oxygen evolution reaction (OER) have been investigated in an alkaline medium. The OER activities of A and B have been correlated with their molecular properties.
      번역하기

      The electrochemical water oxidation ability of complexes 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) in the oxygen evolution reaction (OER) have been investigated in an alkaline medium....

      The electrochemical water oxidation ability of complexes 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) in the oxygen evolution reaction (OER) have been investigated in an alkaline medium. Complex B was found to be kinetically and thermodynamically more active than complex A. The overpotential and Tafel slope of complex B are lower than those of complex A by 30 mV and around 45 mV/decade, respectively, which supports the higher activity of B. Moreover, stability tests endorse the sustainability of both samples under alkaline conditions. It has been found that the 3,5‐di‐tert‐butylphenyl substituent in B plays a decisive role in achieving a better OER onset potential and current than that obtained with A, which is a result of the modulation of the structural parameters of B. Furthermore, the measured OER activities of A and B have been correlated with their molecular arrangement as well as differences in their bonding characteristics and dipole moments. For further insight, the obtained results have been confirmed by a theoretical study.
      The activities of 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) complexes in the oxygen evolution reaction (OER) have been investigated in an alkaline medium. The OER activities of A and B have been correlated with their molecular properties.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼