RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst

      한글로보기

      https://www.riss.kr/link?id=A107726895

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The performance of closed-loop flowing-type microbial fuel cells using differently pretreated carbon felts is measured. Yeast cultivated from <I>S. cerevisiae</I> is used as biocatal...

      <P><B>Abstract</B></P> <P>The performance of closed-loop flowing-type microbial fuel cells using differently pretreated carbon felts is measured. Yeast cultivated from <I>S. cerevisiae</I> is used as biocatalyst, while glucose is the substrate. For the pretreatment of felt, acetone, nitric acid, and polyethyleneimine are employed. First the optimal conditions for yeast cultivation are quantitatively determined. As a result, a high yeast growth rate (1.083 h<SUP>−1</SUP>) and the optimal yeast growing time (48 h) for cell tests are obtained. The differently pretreated felts are analyzed by X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and optical microscopy. Conductivity, charge transfer resistance, and CdbndO and CsbndN groups dangled on the felt are crucial parameters determining the performance of the microbial fuel cell. Particularly, the conjugation effects of pi-pi bonds and lone pairs facilitating the attachment of yeast to the CdbndO and CsbndN groups on the carbon felt promote (i) mutual adhesion between them and (ii) growth of yeast on CF-PEI. This correlation is confirmed by optical analysis of the felts after the cell tests. To evaluate the early-stage performance of the microbial fuel cells using the different felts, polarization curves are measured. In the measurements, the maximum power density of the cells depends on the superficial state of felts, while the performance of the cell using the PEI-treated felt is best, at 256.3 ± 11.5 mW·m<SUP>−2</SUP>. These data match other results attained by pretreatments.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Yeast and chemically treated CF effects on MFC performance are investigated. </LI> <LI> CdbndO/CsbndN dangled on CF-PEI are key bonds for performance enhancement. </LI> <LI> Pi-pi bond conjugation and lone electron pair induce performance enhancement. </LI> <LI> High yeast growth rate and optimal yeast growing time are determined. </LI> <LI> MPD of MFC using CF-PEI is 256.3 mW m<SUP>2</SUP>. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼