RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

      한글로보기

      https://www.riss.kr/link?id=A107002096

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.
      번역하기

      In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information fr...

      In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.

      더보기

      참고문헌 (Reference)

      1 성대경, "딥러닝을 활용한 정치 기사 댓글 분석" 한국컴퓨터정보학회 23 (23): 9-15, 2018

      2 박진규, "딥러닝 기법을 이용한 철도 운행 관련 비정형 SNS 메시지 정형화" 한국컴퓨터정보학회 23 (23): 19-26, 2018

      3 김유희, "딥러닝 기반 기사단위 및 문단 단위별 분류" 한국컴퓨터정보학회 23 (23): 31-41, 2018

      4 김우주, "Word2vec을 활용한 문서의 의미 확장 검색방법" 한국콘텐츠학회 16 (16): 687-692, 2016

      5 이태일, "Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법" 한국인터넷정보학회 20 (20): 11-20, 2019

      6 J. Read, "Using emoticons to reduce dependency in machine learning techniques for sentiment classification" 43-48, 2005

      7 B. Pang, "Thumbs up? Sentiment classification using machine learning techniques" 79-86, 2002

      8 Q. T. Ain, "Sentiment analysis using deep learning techniques : a review" 8 (8): 424-433, 2017

      9 G. Gautam, "Sentiment analysis of twitter data using machine learning approaches and semantic analysis" 437-442, 2014

      10 L. Dey, "Sentiment analysis of review datasets using Naive Bayes and k-nn classifier" 8 (8): 54-62, 2016

      1 성대경, "딥러닝을 활용한 정치 기사 댓글 분석" 한국컴퓨터정보학회 23 (23): 9-15, 2018

      2 박진규, "딥러닝 기법을 이용한 철도 운행 관련 비정형 SNS 메시지 정형화" 한국컴퓨터정보학회 23 (23): 19-26, 2018

      3 김유희, "딥러닝 기반 기사단위 및 문단 단위별 분류" 한국컴퓨터정보학회 23 (23): 31-41, 2018

      4 김우주, "Word2vec을 활용한 문서의 의미 확장 검색방법" 한국콘텐츠학회 16 (16): 687-692, 2016

      5 이태일, "Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법" 한국인터넷정보학회 20 (20): 11-20, 2019

      6 J. Read, "Using emoticons to reduce dependency in machine learning techniques for sentiment classification" 43-48, 2005

      7 B. Pang, "Thumbs up? Sentiment classification using machine learning techniques" 79-86, 2002

      8 Q. T. Ain, "Sentiment analysis using deep learning techniques : a review" 8 (8): 424-433, 2017

      9 G. Gautam, "Sentiment analysis of twitter data using machine learning approaches and semantic analysis" 437-442, 2014

      10 L. Dey, "Sentiment analysis of review datasets using Naive Bayes and k-nn classifier" 8 (8): 54-62, 2016

      11 C. Bhadane, "Sentiment analysis : Measuring opinions" 45 (45): 808-814, 2015

      12 F. H. Khan, "SentiMI : Introducing point-wise mutual information with SentiWordNet to improve sentiment polarity detection" 39 : 140-153, 2016

      13 T. Mikolov, "Distributed representations of words and phrases and their compositionality" 3111-3119, 2013

      14 A. Abdi, "Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion" 56 (56): 1245-1259, 2019

      15 T. A. Rana, "Aspect extraction in sentiment analysis : comparative analysis and survey" 46 (46): 459-483, 2016

      16 F. Tang, "Aspect based fine-grained sentiment analysis for online reviews" 488 : 190-204, 2019

      17 S. M. Liu, "A multi-label classification based approach for sentiment classification" 42 (42): 1083-1093, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼