RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조 = Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone

      한글로보기

      https://www.riss.kr/link?id=A107255270

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tri...

      Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2<sup>nd</sup>-order model than for the Pseudo-1<sup>st</sup>-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L. lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.

      더보기

      참고문헌 (Reference)

      1 Kayser, H., "Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperaturure" 250 (250): 450-468, 1881

      2 Ebrahimnejad, P., "Survival of Lactobacillus Acidophilus as Probiotic Bacteria using Chitosan Nanoparticles" 30 (30): 57-63, 2017

      3 Sudha Bai, R., "Studies on Chromium(VI)Adsorption–desorption Using Immobilized Fungal Biomass" 87 (87): 17-26, 2003

      4 Li, Z., "Sorption of Arsenic by Surfactant-modified Zeolite and Kaolinite" 105 (105): 291-297, 2007

      5 Sparks, D. L., "Sorption Phenomena on Soils" 157 : 133-186, 2003

      6 Ahmad, A., "Scavenging Behaviour of Meranti Sawdust in the Removal of Methylene Blue from Aqueous Solution" 170 (170): 357-365, 2009

      7 Veglio, F., "Removal of Metals By Biosorption:A Review" 44 (44): 301-316, 1997

      8 Silva, M. J., "Quantification of Phthalate Metabolites in Human Urine" 860 (860): 106-112, 2007

      9 Mohammad, N., "Preparation of Chitosan Nanoparticles Containing Naja Naja Oxiana Snake Venom" 6 (6): 137-143, 2010

      10 Hall, K. R., "Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions" 5 (5): 212-223, 1966

      1 Kayser, H., "Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperaturure" 250 (250): 450-468, 1881

      2 Ebrahimnejad, P., "Survival of Lactobacillus Acidophilus as Probiotic Bacteria using Chitosan Nanoparticles" 30 (30): 57-63, 2017

      3 Sudha Bai, R., "Studies on Chromium(VI)Adsorption–desorption Using Immobilized Fungal Biomass" 87 (87): 17-26, 2003

      4 Li, Z., "Sorption of Arsenic by Surfactant-modified Zeolite and Kaolinite" 105 (105): 291-297, 2007

      5 Sparks, D. L., "Sorption Phenomena on Soils" 157 : 133-186, 2003

      6 Ahmad, A., "Scavenging Behaviour of Meranti Sawdust in the Removal of Methylene Blue from Aqueous Solution" 170 (170): 357-365, 2009

      7 Veglio, F., "Removal of Metals By Biosorption:A Review" 44 (44): 301-316, 1997

      8 Silva, M. J., "Quantification of Phthalate Metabolites in Human Urine" 860 (860): 106-112, 2007

      9 Mohammad, N., "Preparation of Chitosan Nanoparticles Containing Naja Naja Oxiana Snake Venom" 6 (6): 137-143, 2010

      10 Hall, K. R., "Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions" 5 (5): 212-223, 1966

      11 Ventrice, P., "Phthalates: European Regulation, Chemistry, Pharmacokinetic and Related Toxicity" 36 (36): 88-96, 2013

      12 Pecht, M. G., "Phthalates in Electronics:The Risks and the Alternatives" 6 : 6232-6242, 2018

      13 Moldes, A. B., "Partial Characterization of Biosurfactant from Lactobacillus Pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil" 13 : 961-982, 2013

      14 Fromme, H., "Occurrence and Daily Variation of Phthalate Metabolites in the Urine of an Adult Population" 210 (210): 21-33, 2007

      15 Latini, G., "Monitoring Phthalate Exposure in Humans" 361 (361): 20-29, 2005

      16 Aydin, S., "Modelling of Adsorption Kinetic Processes—Errors" 18 : 19-, 2008

      17 Tran, H. N., "Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions, A Critical Review" 120 : 88-116, 2017

      18 Everett, D. H., "Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry" 31 (31): 577-638, 1972

      19 Yang, X., "Kinetic Modeling of Liquid-phase Adsorption of Reactive Dyes on Activated Carbon" 287 (287): 25-34, 2005

      20 Wittassek, M., "Internal Phthalate Exposure over the Last Two Decades--a Retrospective Human Biomonitoring Study" 210 (210): 319-333, 2007

      21 Tan, K. L., "Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions" 74 : 25-48, 2017

      22 Du, Q., "Highly Enhanced Adsorption of Congo Red Onto Graphene Oxide/chitosan Fibers by Wet-chemical Etching off Silica Nanoparticles" 245 : 99-106, 2014

      23 Kim, B. G., "Evaluation of the Effects of Biodegradable Nanoparticles on a Vaccine Delivery System Using AFM, SEM, and TEM" 108 (108): 1168-1173, 2009

      24 Volesky, B., "Detoxification of Metal-bearing Effluents: Biosorption for the Next Century" 59 (59): 203-216, 2001

      25 Vander Wal, A., "Determination of the Total Charge in the Cell Walls of Gram-positive Bacteria" 9 (9): 81-100, 1997

      26 Hassan, M, "Decolorisation of Effluent with Ozone and re-use of Spent Dyebath"

      27 Becker, K., "DEHP Metabolites in Urine of Children and DEHP in House Dust" 207 (207): 409-417, 2004

      28 Jae-Wook Lim, "Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering" 대한화학회 34 (34): 237-242, 2013

      29 Han, R., "Characterization of Modified Wheat Straw, Kinetic and Equilibrium Study About Copper ion and Methylene Blue Adsorption in Batch Mode" 79 (79): 1140-1149, 2010

      30 Vijayaraghavan, K., "Bacterial Biosorbents and Biosorption" 26 (26): 266-291, 2008

      31 Silva, M. J., "Analysis of Human Urine for Fifteen Phthalate Metabolites Using Automated Solid-phase Extraction" 805 (805): 161-167, 2004

      32 Huang, R., "Adsorptive Removal of Congo red from Aqueous Solutions Using Crosslinked Chitosan and Crosslinked Chitosan Immobilized Bentonite" 86 : 496-504, 2016

      33 Ahmad, R., "Adsorptive Removal of Congo Red Dye from Aqueous Solution Using Bael Shell Carbon" 257 (257): 1628-1633, 2010

      34 Annadurai, G., "Adsorption of Reactive Dye on Chitin" 59 (59): 111-119, 1999

      35 Longhinotti, E., "Adsorption of Anionic Dyes on the Biopolymer Chitin" 9 (9): 435-440, 1998

      36 Al-Aoh, H. A., "Adsorption of 4-nitrophenol on Palm Oil Fuel Ash Activated by Amino Silane Coupling Agent" 40 (40): 159-167, 2012

      37 Han, X., "Adsorption Characteristics of Methylene Blue Onto Low Cost Biomass Material Lotus Leaf" 171 (171): 1-8, 2011

      38 Ho, Y. S., "A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents" 76 (76): 332-340, 1998

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼