RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Amino‐functionalized carbon nanotubes for effectively improving the mechanical properties of pre‐impregnated epoxy resin/carbon fiber

      한글로보기

      https://www.riss.kr/link?id=O112660687

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Pre‐impregnated carbon fiber/epoxy resin (CF/epoxy prepreg) gained its popularity for significant stress applications, especially in the aerospace industry, owing to its excellent resistance and low specific mass. However, these CF/epoxy prepregs ha...

      Pre‐impregnated carbon fiber/epoxy resin (CF/epoxy prepreg) gained its popularity for significant stress applications, especially in the aerospace industry, owing to its excellent resistance and low specific mass. However, these CF/epoxy prepregs have a tendency to crack propagation. A solution for the prepregs fragility is the addition of carbon nanotubes (CNTs), especially those functionalized with amino groups, reinforcing the material due to its exceptional mechanical properties. In this work, the influence of the carbon chain length of two different amino‐functionalized CNTs from diverse backgrounds (commercial and laboratory growth CNTs) is studied. The nanofillers were added in CF/epoxy prepregs by dry spraying without solvent aid. CNTs' samples were characterized by X‐ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis (TGA), while the composites were analyzed by TGA, dynamic‐mechanical analysis, and field emission scanning electron microscopy. The various surface treatment occurred at different levels according to the CNTs background, and all samples exhibited a distinct behavior. These differences were also observed in the composites' thermomechanical performance: CNTs functionalized with larger carbon chain amine presented the best results, with an increase of almost 100% in the storage moduli (E'), confirming the efficiency of amino‐functionalized CNTs in the reinforcement of CF/epoxy prepregs.
      Carbon fiber (CF) reinforced composites are widely used in many applications due to their excellent mechanical properties. However, the fiber/matrix interface is fragile, particularly in the interlaminar region where delamination can occur. Therefore, for optimizing the interface microstructure, we propose reinforcing CF/epoxy resin prepregs with amino‐functionalized carbon nanotubes (CNTs) to promote improved interaction between the composite's interlaminar layers, enhancing its mechanical properties and expanding the materials’ application.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼