RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells

      한글로보기

      https://www.riss.kr/link?id=A107427341

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>An investigation into the postbuckling and geometrically nonlinear behaviors of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shells is carried out in this study. The discr...

      <P><B>Abstract</B></P> <P>An investigation into the postbuckling and geometrically nonlinear behaviors of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shells is carried out in this study. The discrete nonlinear equation system is established based on non-uniform rational B-Spline (NURBS) basis functions and the first-order shear deformation shell theory (FSDT). The nonlinearity of shells is formed in the Total Lagrangian approach considering the von Karman assumption. The incremental solutions are obtained by using a modified Riks method. In the present formulation, the rule of mixture is used to estimate the effective material properties of FG-CNTRC shells. Effects of CNTs distribution, volume fraction and CNTs orientation on the postbuckling behavior of FG-CNTRC shells are particularly investigated. Exact geometries of shells are modeled by using NURBS interpolation. Several verifications are given to show the high reliability of the proposed formulation. Especially, some complex postbuckling curves of FG-CNTRC panels and cylinders are first provided that could be useful for future references.</P> <P><B>Highlights</B></P> <P> <UL> <LI> NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells is performed in this paper. </LI> <LI> The discrete nonlinear equation system is established based on non-uniform rational B-Spline (NURBS) basis functions and the first-order shear deformation shell theory (FSDT). </LI> <LI> The nonlinearity of shells is formed in the Total Lagrangian approach considering the von Karman assumption. </LI> <LI> Effects of CNTs distribution, volume fraction and CNTs orientation on the postbuckling behavior of FG-CNTRC shells are particularly investigated. </LI> <LI> Some complex postbuckling curves of FG-CNTRC panels and cylinders are first provided that could be useful for future references. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼