Electro-active polymers and dielectric elastomers have many intriguing properties that enable smart interfaces and electrically tunable optical systems, such as haptic feedback devices, artificial muscles, and expansion-tunable optical elements. These...
Electro-active polymers and dielectric elastomers have many intriguing properties that enable smart interfaces and electrically tunable optical systems, such as haptic feedback devices, artificial muscles, and expansion-tunable optical elements. These device classes are of great interest owing to their promising roles in next-generation technologies including virtual or augmented reality, human sensing and muscular enhancement, and artificial skins. In this report, we review basic principles, current state-of-the-art techniques, and future prospects of electro-active and dielectric elastomer technology. We describe chemical and physical properties of the most promising polymer substances, essential elementary architectures for artificial muscle-like functionalities, and their applications to haptic interfaces, muscular enhancement, and focus-tunable optical elements.