RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      The Ongoing Search for Small Molecules to Study Metal-Associated Amyloid-β Species in Alzheimer’s Disease

      한글로보기

      https://www.riss.kr/link?id=A107548259

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <title>Conspectus</title><P>The development of a cure for Alzheimer’s disease (AD) has been impeded by an inability to pinpoint the root cause of this disorder. Although numerous potential pathological factors have been indicat...

      <title>Conspectus</title><P>The development of a cure for Alzheimer’s disease (AD) has been impeded by an inability to pinpoint the root cause of this disorder. Although numerous potential pathological factors have been indicated, acting either individually or mutually, the molecular mechanisms leading to disease onset and progression have not been clear. Amyloid-β (Aβ), generated from proteolytic processing of the amyloid precursor protein (APP), and its aggregated forms, particularly oligomers, are suggested as key pathological features in AD-affected brains. Historically, highly concentrated metals are found colocalized within Aβ plaques. Metal binding to Aβ (metal–Aβ) generates/stabilizes potentially toxic Aβ oligomers, and produces reactive oxygen species (ROS) in vitro (redox active metal ions; plausible contribution to oxidative stress). Consequently, clarification of the relationship between Aβ, metal ions, and toxicity, including oxidative stress via metal–Aβ, can lead to a deeper understanding of AD development.</P><P>To probe the involvement of metal–Aβ in AD pathogenesis, rationally designed and naturally occurring molecules have been examined as chemical tools to target metal–Aβ species, modulate the interaction between the metal and Aβ, and subsequently redirect their aggregation into nontoxic, off-pathway unstructured aggregates. These ligands are also capable of attenuating the generation of redox active metal–Aβ-induced ROS to mitigate oxidative stress. One rational design concept, the incorporation approach, installs a metal binding site into a framework known to interact with Aβ. This approach affords compounds with the simultaneous ability to chelate metal ions and interact with Aβ. Natural products capable of Aβ interaction have been investigated for their influence on metal-induced Aβ aggregation and have inspired the construction of synthetic analogues. Systematic studies of these synthetic or natural molecules could uncover relationships between chemical structures, metal/Aβ/metal–Aβ interactions, and inhibition of Aβ/metal–Aβ reactivity (i.e., aggregation modes of Aβ/metal–Aβ; associated ROS production), suggesting mechanisms to refine the design strategy.</P><P>Interdisciplinary investigations have demonstrated that the designed molecules and natural products control the aggregation pathways of metal–Aβ species transforming their size/conformation distribution. The aptitude of these molecules to impact metal–Aβ aggregation pathways, either via inhibition of Aβ aggregate formation, most importantly of oligomers, or disaggregation of preformed fibrils, could originate from their formation of complexes with metal–Aβ. Potentially, these molecules could direct metal–Aβ size/conformational states into alternative nontoxic unstructured oligomers, and control the geometry at the Aβ-ligated metal center for limited ROS formation to lessen the overall toxicity induced by metal–Aβ. Complexation between small molecules and Aβ/metal–Aβ has been observed by nuclear magnetic resonance spectroscopy (NMR) and ion mobility-mass spectrometry (IM-MS) pointing to molecular level interactions, validating the design strategy. In addition, these molecules exhibit other attractive properties, such as antioxidant capacity, prevention of ROS production, potential blood-brain barrier (BBB) permeability, and reduction of Aβ-/metal–Aβ-induced cytotoxicity, making them desirable tools for unraveling AD complexity. In this Account, we summarize the recent development of small molecules, via both rational design and the selection and modification of natural products, as tools for investigating metal–Aβ complexes, to advance our understanding of their relation to AD p

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼