RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      A switched parameter differential evolution with optional blending crossover for scalable numerical optimization

      한글로보기

      https://www.riss.kr/link?id=A107508035

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Differential Evolution (DE) is currently one of the most competitive Evolutionary Algorithms (EAs) for optimization problems involving continuous parameters. This article presents three very simple modifications to the basic DE scheme such that its performance can be improved and made scalable for optimizing functions having a real-valued moderate-to-high number of variables (dimensions) while focusing on preservation of the simplicity offered by its algorithmic framework. Contrary to the common policies of coupling a complicated scheme for adaptation of the control parameters or introducing additional local search algorithms, we present here a (population member and generation specific) control parameter choosing strategy which uniformly and randomly switches the values of the mutational scale factor and crossover rate between two extremities of their feasible ranges. Furthermore, each population member is mutated either by using the DE/rand/1 scheme or a proposed version of the DE/current-to-best scheme. The mutation scheme for a population member is chosen based on its performance in the current generation. Hence if a mutation strategy successfully replaces a target vector by the corresponding trial vector, then it is reused by the population member of the same index in the following generation, else a switch of mutation method is executed. In the crossover phase, each member undergoes either the common binomial crossover or the BLX-alpha-beta crossover modified for applying in DE, with equal probabilities. Our experiments using the benchmark optimization functions proposed for the IEEE Congress on Evolutionary Computation (CEC) 2013 competition on real parameter optimization and CEC 2010 competition on large-scale global optimization demonstrate that the basic DE optimizer when coupled with these elementary alterations and/or schemes can indeed provide a very competitive result against some of the most prominent state-of-the-art algorithms. (C) 2017 Elsevier B.V. All rights reserved.</P>
      번역하기

      <P>Differential Evolution (DE) is currently one of the most competitive Evolutionary Algorithms (EAs) for optimization problems involving continuous parameters. This article presents three very simple modifications to the basic DE scheme such th...

      <P>Differential Evolution (DE) is currently one of the most competitive Evolutionary Algorithms (EAs) for optimization problems involving continuous parameters. This article presents three very simple modifications to the basic DE scheme such that its performance can be improved and made scalable for optimizing functions having a real-valued moderate-to-high number of variables (dimensions) while focusing on preservation of the simplicity offered by its algorithmic framework. Contrary to the common policies of coupling a complicated scheme for adaptation of the control parameters or introducing additional local search algorithms, we present here a (population member and generation specific) control parameter choosing strategy which uniformly and randomly switches the values of the mutational scale factor and crossover rate between two extremities of their feasible ranges. Furthermore, each population member is mutated either by using the DE/rand/1 scheme or a proposed version of the DE/current-to-best scheme. The mutation scheme for a population member is chosen based on its performance in the current generation. Hence if a mutation strategy successfully replaces a target vector by the corresponding trial vector, then it is reused by the population member of the same index in the following generation, else a switch of mutation method is executed. In the crossover phase, each member undergoes either the common binomial crossover or the BLX-alpha-beta crossover modified for applying in DE, with equal probabilities. Our experiments using the benchmark optimization functions proposed for the IEEE Congress on Evolutionary Computation (CEC) 2013 competition on real parameter optimization and CEC 2010 competition on large-scale global optimization demonstrate that the basic DE optimizer when coupled with these elementary alterations and/or schemes can indeed provide a very competitive result against some of the most prominent state-of-the-art algorithms. (C) 2017 Elsevier B.V. All rights reserved.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼