RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      종형의 활성 함수를 사용한 인공 신경망의 학습 효과 = Learning Effect of Artificial Neural Network Using Bell-Shaped Activation Function

      한글로보기

      https://www.riss.kr/link?id=A108801111

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The learning effect of an artificial neural network basically depends on theactivation function used for the neurons in hidden layers. In this paper, we try toanalyze the learning effect of an artificial neural network using a bell-shapedactivation fu...

      The learning effect of an artificial neural network basically depends on theactivation function used for the neurons in hidden layers. In this paper, we try toanalyze the learning effect of an artificial neural network using a bell-shapedactivation function for the neurons in hidden layers. For this purpose, we present asimple neural network using a bell-shaped function, and attempt to model thecharacteristics of a dynamic system through the learning process by errorback-propagation. Through simulations, we shows the learning effect of the neuralnetwork using a bell-shaped function by comparing the case of considering asigmoid function. As a result, it is shown that training of neural networks using abell-shaped activation function is relatively fast and stable, so that such a neuralnetwork can be usefully applied for more appropriate modeling of dynamic systems.

      더보기

      국문 초록 (Abstract)

      인공 신경망의 학습 효과는 기본적으로 은닉층의 뉴런에 사용된 활성 함수에 따라 달라질수 있다. 본 논문에서는 은닉층의 뉴런에 종형의 활성 함수를 사용한 인공 신경망의 학습 효과를 분...

      인공 신경망의 학습 효과는 기본적으로 은닉층의 뉴런에 사용된 활성 함수에 따라 달라질수 있다. 본 논문에서는 은닉층의 뉴런에 종형의 활성 함수를 사용한 인공 신경망의 학습 효과를 분석하고자 한다. 이러한 목적을 위하여, 종형의 활성 함수를 사용한 간단한 신경망을제시하고, 오차역전달 학습 과정을 통하여 동적 시스템의 특성 모델링을 시도한다. 시뮬레이션을 통하여, 시그모이드 함수를 고려한 경우와 비교하여 종형 함수를 사용한 신경망의 학습효과를 제시한다. 결과적으로, 종형의 활성 함수를 사용한 신경망의 학습이 상대적으로 빠르고 안정적이어서 이러한 신경망이 보다 적절한 동적 시스템의 모델링을 위하여 유용하게 적용될 수 있음을 보인다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼