RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CIE L*a*b* 칼라 공간의 성분 영상 a*을 이용한 효과적인 여드름 검출 = Effective Acne Detection using Component Image a* of CIE L*a*b* Color Space

      한글로보기

      https://www.riss.kr/link?id=A106053693

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Today, modern people perceive skin care as part of their physical health care, and acne is a common skin disease problem that is found on the face. In this paper, an effective acne detection algorithm using CIE L*a*b* color space has been proposed. It is red when the pixel value of the component image a* is a positive number, so it is suitable for detecting acne in skin image. First, the skin image based on the RGB color space is subjected to light compensation through color balancing, and converted into a CIE L*a*b* color space. The extracted component image a* was normalized, and then the skin and acne area were estimated with the threshold values. Experimental results show that the proposed method detects acne more effectively than the conventional method based on brightness information, and the proposed method is robust against the reflected light source.
      번역하기

      Today, modern people perceive skin care as part of their physical health care, and acne is a common skin disease problem that is found on the face. In this paper, an effective acne detection algorithm using CIE L*a*b* color space has been proposed. It...

      Today, modern people perceive skin care as part of their physical health care, and acne is a common skin disease problem that is found on the face. In this paper, an effective acne detection algorithm using CIE L*a*b* color space has been proposed. It is red when the pixel value of the component image a* is a positive number, so it is suitable for detecting acne in skin image. First, the skin image based on the RGB color space is subjected to light compensation through color balancing, and converted into a CIE L*a*b* color space. The extracted component image a* was normalized, and then the skin and acne area were estimated with the threshold values. Experimental results show that the proposed method detects acne more effectively than the conventional method based on brightness information, and the proposed method is robust against the reflected light source.

      더보기

      참고문헌 (Reference)

      1 김주덕, "여드름에 대한 인식 및 관리 실태 연구" 한국니트디자인학회 13 (13): 1-9, 2015

      2 권혁봉, "YCbCr 색공간에서 피부색과 윤곽선 정보를이용한 얼굴 영역 검출" 한국멀티미디어학회 7 (7): 27-34, 2004

      3 C. G. Woo, "Skin Region Detection using YCbCr and L*a*b* Color Space" 63-65, 2018

      4 VOCAL Technologies, "RGB and HSV/HSI/HSL Color Space Conversion[Internet]"

      5 양혁진, "Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image" 한국디지털콘텐츠학회 18 (18): 1603-1613, 2017

      6 Humayun J., "Localization of acne lesion through template matching" 91-94, 2012

      7 S. Kolkur, "Human skin detection using RGB, HSV and YCbCr color models" 324-332, 2016

      8 H. Fuji, "Extraction of acne lesion in acne patients from multispectral images" 4078-4081, 2008

      9 R. C. Gonzalez, "Digital image processing using MATLAB, 1st ed" Pearson Prentice Hall 2004

      10 Nasim A., "Detection and Classification of Acne Lesions in Acne Patients: A Mobile Application" 739-743, 2016

      1 김주덕, "여드름에 대한 인식 및 관리 실태 연구" 한국니트디자인학회 13 (13): 1-9, 2015

      2 권혁봉, "YCbCr 색공간에서 피부색과 윤곽선 정보를이용한 얼굴 영역 검출" 한국멀티미디어학회 7 (7): 27-34, 2004

      3 C. G. Woo, "Skin Region Detection using YCbCr and L*a*b* Color Space" 63-65, 2018

      4 VOCAL Technologies, "RGB and HSV/HSI/HSL Color Space Conversion[Internet]"

      5 양혁진, "Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image" 한국디지털콘텐츠학회 18 (18): 1603-1613, 2017

      6 Humayun J., "Localization of acne lesion through template matching" 91-94, 2012

      7 S. Kolkur, "Human skin detection using RGB, HSV and YCbCr color models" 324-332, 2016

      8 H. Fuji, "Extraction of acne lesion in acne patients from multispectral images" 4078-4081, 2008

      9 R. C. Gonzalez, "Digital image processing using MATLAB, 1st ed" Pearson Prentice Hall 2004

      10 Nasim A., "Detection and Classification of Acne Lesions in Acne Patients: A Mobile Application" 739-743, 2016

      11 Wikipedia, "CIELAB color space[Internet]"

      12 Wikipedia, "CIE 1931 color space[Internet]"

      13 T. Chantharaphaichit, "Automatic Acne Detection for Medical Treatment" 33-38, 2015

      14 Y. B. Kim, "An Implementation of a Skin Care System for Android Phones" 57-61, 2016

      15 P. Yogarajah, "A Dynamic Threshold Approach For Skin Segmentation in Color Images" 2225-2228, 2010

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보 1차 FAIL (등재후보2차) KCI등재후보
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-02-17 학회명변경 한글명 : 한국디지털컨텐츠학회 -> 한국디지털콘텐츠학회 KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2005-09-21 학술지명변경 한글명 : 디지털컨텐츠학회논문지 -> 디지털콘텐츠학회논문지
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.39 0.37 0.636 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼