RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids

      한글로보기

      https://www.riss.kr/link?id=A105988033

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Knowledge of the surface tension of ionic liquids (ILs) and their related mixtures is of central importance and enables engineers to efficiently design new processes dealing with these fluids on an industrial scale. It’s obvious that experimental de...

      Knowledge of the surface tension of ionic liquids (ILs) and their related mixtures is of central importance and enables engineers to efficiently design new processes dealing with these fluids on an industrial scale. It’s obvious that experimental determination of surface tension of every conceivable IL and its mixture with other compounds would be a herculean task. Besides, experimental measurements are intrinsically laborious and expensive; therefore, accurate prediction of the property using a reliable technique would be overwhelmingly favorable. To do so, a modeling method based on artificial neural network (ANN) trained by Bayesian regulation back propagation training algorithm (trainbr) has been proposed to predict surface tension of the binary ILs mixtures. A total set of 748 data points of binary surface tension of IL systems within temperature range of 283.1-348.15 K was used to train and test the applied network. The obtained results indicated that the predictive values and experimental data are quite matching, representing reliability of the used ANN model for such purpose. Also, compared with other methods, such as SVM, GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN and ANN trained with trainlm algorithm the proposed model was better in terms of accuracy.

      더보기

      참고문헌 (Reference)

      1 M.-A. Ahmadi, 97 : 81-, 2015

      2 M. A. Ahmadi, 92 : 60-, 2014

      3 A. Ahosseini, 55 : 1611-, 2009

      4 N. Altinkok, 25 : 595-, 2004

      5 R. Bini, 10 : 306-, 2008

      6 R. B. Boozarjomehry, 231 : 188-, 2005

      7 A. J. Costa, 56 : 3433-, 2011

      8 N. Darwish, 85 : 417-, 2007

      9 Q. Dong, 52 : 1151-, 2007

      10 A. Eslamimanesh, 66 : 3039-, 2011

      1 M.-A. Ahmadi, 97 : 81-, 2015

      2 M. A. Ahmadi, 92 : 60-, 2014

      3 A. Ahosseini, 55 : 1611-, 2009

      4 N. Altinkok, 25 : 595-, 2004

      5 R. Bini, 10 : 306-, 2008

      6 R. B. Boozarjomehry, 231 : 188-, 2005

      7 A. J. Costa, 56 : 3433-, 2011

      8 N. Darwish, 85 : 417-, 2007

      9 Q. Dong, 52 : 1151-, 2007

      10 A. Eslamimanesh, 66 : 3039-, 2011

      11 R. Eslamloueyan, 48 : 1094-, 2009

      12 R. Eslamloueyan, 54 : 922-, 2009

      13 M.-R. Fatehi, 95 : 60-, 2014

      14 F. l.M. Gacino, 56 : 4984-, 2011

      15 G. Garcia-Miaja, 41 : 161-, 2009

      16 M. Geppert-Rybczynska, 62 : 104-, 2013

      17 F. Gharagheizi, 66 : 2959-, 2011

      18 F. Gharagheizi, 59 : 613-, 2013

      19 F. Gharagheizi, 66 : 4991-, 2011

      20 F. Gharagheizi, 78 : 204-, 2012

      21 A. Golbraikh, 20 : 269-, 2002

      22 K. Golzar, 53 : 7247-, 2014

      23 K.R. Harris, 51 : 1161-, 2006

      24 M. Hashemkhani, 211 : 534-, 2015

      25 X. He, 238 : 52-, 2005

      26 J. Hekayati, 231 : 451-, 2017

      27 A.Z. Hezave, 352 : 34-, 2013

      28 A.Z. Hezave, 314 : 128-, 2012

      29 A. Z. Hezave, 51 : 9886-, 2012

      30 H. Jiang, 64 : 1-, 2013

      31 G.W. Kauffman, 41 : 408-, 2001

      32 F. Kermanpour, 48 : 129-, 2012

      33 M. Lashkarblooki, 326 : 15-, 2012

      34 M. Lashkarbolooki, 52 : 1454-, 2017

      35 M. Lashkarbolooki, 324 : 102-, 2012

      36 M. Lashkarbolooki, 73 : 108-, 2013

      37 M. Lashkarbolooki, 75 : 144-, 2013

      38 M. Lashkarbolooki, 343 : 24-, 2013

      39 S. Laugier, 210 : 247-, 2003

      40 J.A. Lazzus, 40 : 213-, 2009

      41 H. Machida, 56 : 923-, 2010

      42 M. Mirarab, 371 : 6-, 2014

      43 S. Mohanty, 29 : 243-, 2006

      44 A. Mohebbi, 31 : 1317-, 2008

      45 F. Nami, 43 : 22-, 2011

      46 H. Okuyucu, 28 : 78-, 2007

      47 M. Oliveira, 116 : 12133-, 2012

      48 M. S. Ozerdem, 208 : 470-, 2008

      49 P. Pratim Roy, 14 : 1660-, 2009

      50 E. Rilo, 49 : 165-, 2012

      51 E. Rilo, 285 : 83-, 2009

      52 A.A. Rohani, 38 : 1738-, 2011

      53 T. Ross, 81 : 501-, 1996

      54 M. Sadrzadeh, 48 : 1371-, 2009

      55 M. Sadrzadeh, 144 : 431-, 2008

      56 M. Safamirzaei, 332 : 165-, 2012

      57 M. Safamirzaei, 545 : 125-, 2012

      58 M.A. Sedghamiz, 9 : 39-, 2015

      59 S. Seki, 57 : 2211-, 2012

      60 A. Shafiei, 95 : 525-, 2014

      61 R. Soleimani, 242 : 701-, 2017

      62 Z. Sterjovski, 170 : 536-, 2005

      63 M. Tariq, 41 : 829-, 2012

      64 J. Taskinen, 55 : 1163-, 2003

      65 J. S. Torrecilla, 93 : 149-, 2008

      66 J. S. Torrecilla, 10 : 5826-, 2008

      67 J. Troncoso, 51 : 1856-, 2006

      68 S. Urata, 199 : 63-, 2002

      69 G. Vakili-Nezhaad, 54 : 148-, 2012

      70 L. F. Vega, 294 : 15-, 2010

      71 A. Wandschneider, 53 : 596-, 2008

      72 J.-y. Wang, 43 : 800-, 2011

      73 J.-Y. Wang, 305 : 114-, 2011

      74 Y. Wei, 55 : 2616-, 2010

      75 Pablo Díaz-Rodríguez, "Viscosity estimation of binary mixtures of ionic liquids through a multi-layer perceptron model" 한국공업화학회 21 (21): 1350-1353, 2015

      76 G. Betts, "Verification and validation of food spoilage models, Understanding and measuring shelf life of food" CRC Press 184-, 2004

      77 B. E. Poling, "The properties of gases and liquids" Mcgraw-hill 2001

      78 P. J. Carvalho, "Surface tensions for the 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids" 2008

      79 A. Kazakov, "Nist standard reference database 147: Nist ionic liquids database-(ilthermo), version 2.0"

      80 P. J. Linstrom, "Nist Chemistry Webbook; nist standard reference database no. 69"

      81 S. Haykin, "Neural networks: A comprehensive foundation" Macmillan college publishing company 1994

      82 D.R. Baughman, "Neural networks in bioprocessing and chemical engineering" Academic Press 2014

      83 J. Zupan, "Neural networks for chemists: An introduction" John Wiley & Sons, Inc 1993

      84 H. Demuth, "Neural network toolboxTM 6, User's guide" 37-, 2008

      85 B.N.K. L. Ding, "Neural network fundamentals with graphs, algorithms and applications" Mac Graw-Hill 1996

      86 K. A. Al-Shayji, "Modeling, simulation, and optimization of large-scale commercial desalination plants" 1998

      87 G. Meindersma, "Ionic liquids. Ullmann's encyclopedia of industrial chemistry" Wiley-VCH Verlag GmbH & Co. KGaA 2000

      88 Saeid Atashrouz, "Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures" 한국화학공학회 34 (34): 425-439, 2017

      89 S.G. Makridakis, "Forecasting methods for management" 1989

      90 S. Makridakis, "Forecasting methods and applications" John Wiley & Sons 2008

      91 I. H. Witten, "Data mining: Practical machine learning tools and tec" Morgan Kaufmann 2016

      92 Mostafa Lashkarbolooki, "Correlation of density for binary mixtures of methanol+ionic liquids using back propagation artificial neural network" 한국화학공학회 30 (30): 213-220, 2013

      93 P. Mehra, "Artificial neural networks: Concepts and theory" IEEE Computer Society Press 1992

      94 Y. Miao, "Artificial neural network model to predict compositional viscosity over a broad range of temperatures" IEEE 668-, 2010

      95 M. Freemantle, "An introduction to ionic liquids" 2010

      96 J.A. Freeman, "Algorithms, applications, and programming techniques" Addison-Wesley Publishing Company 1991

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼