RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Progress of display performances: AR, VR, QLED, and OLED

      한글로보기

      https://www.riss.kr/link?id=A106638949

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In 2019, the device performances of the display technologies were largely advanced by the development of new materials and of the device architecture and driving scheme. The recent progress in the areas of virtual reality (VR), augmented reality (AR),...

      In 2019, the device performances of the display technologies were largely advanced by the development of new materials and of the device architecture and driving scheme. The recent progress in the areas of virtual reality (VR), augmented reality (AR), quantum dot light-emitting diode (QLED), and organic light-emitting diode (OLED) is comprehensively summarized and discussed in this paper.

      더보기

      참고문헌 (Reference)

      1 H. -J. Yeom, 23 : 32025-32034, 2015

      2 Kyulux,

      3 "www.oled.com"

      4 "https://www.pimax.com/pages/pimax-8k-series"

      5 "https://www.nreal.ai/old-press/nreal-light-announ cement/"

      6 "https://www.microsoft.com/en-us/hololens"

      7 "https://magic-leap.reality.news/news/magic-leap-onefield-view-specs-finally-uncovered-0186278/"

      8 "https://letinar.com/technology/"

      9 "https://en.wikipedia.org/wiki/Comparison_of_virtual_reality_headsets"

      10 K. Rathinavel, "Varifocal Occlusion-Capable Optical See-Through Augmented Reality Display Based on Focus-Tunable Optics" 25 : 3125-3134, 2019

      1 H. -J. Yeom, 23 : 32025-32034, 2015

      2 Kyulux,

      3 "www.oled.com"

      4 "https://www.pimax.com/pages/pimax-8k-series"

      5 "https://www.nreal.ai/old-press/nreal-light-announ cement/"

      6 "https://www.microsoft.com/en-us/hololens"

      7 "https://magic-leap.reality.news/news/magic-leap-onefield-view-specs-finally-uncovered-0186278/"

      8 "https://letinar.com/technology/"

      9 "https://en.wikipedia.org/wiki/Comparison_of_virtual_reality_headsets"

      10 K. Rathinavel, "Varifocal Occlusion-Capable Optical See-Through Augmented Reality Display Based on Focus-Tunable Optics" 25 : 3125-3134, 2019

      11 B. A. Narasimhan, "Ultra-Compact Pancake Optics Based on ThinEyes® Super-Resolution Technology for Virtual Reality Headsets" 10676 : 106761G-, 2018

      12 B. Wheelwright, "Tradeoffs in VR Optics"

      13 S. Lee, "Tomographic Near-Eye Displays" 10 : 2019

      14 Y. Li, "Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, andElectroluminescence" 141 : 6448-6452, 2019

      15 X. Dai, "Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots" 515 : 96-99, 2014

      16 M. Hillenbrand, "See-Through Near to Eye Displays: Challenges and Solution Paths" 2017

      17 C. Jang, "Retinal 3D: Augmented Reality Near-Eye Display via Pupil-Tracked Light Field Projection on Retina" 36 : 2017

      18 Ho Jin Jang, "Progress of display performances: AR, VR, QLED, OLED, and TFT" 한국정보디스플레이학회 20 (20): 1-8, 2019

      19 T. Zhan, "Panchratnam-Berry Optical Elements for Head-Up and Near-Eye Displays" 36 : D52-D65, 2019

      20 Y. Kim, "P-110: Efficient InP-based Quantum Dot Light Emitting Diodes utilizing a Crosslinkable Hole Transport Layer" 49 : 1625-1628, 2018

      21 J. Song, "Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer" 29 : 1808377-, 2019

      22 Q. Su, "Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes" 5 : 1800549-, 2018

      23 A. Mainmone, "Optical Architecture of Hololens Mixed Reality Headset" 36 : 2017

      24 Q. Lin, "Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process" 5 : 939-946, 2018

      25 J. -H. Park, "Non-Hogel-Based Computer Generated Hologram from Light Field Using Complex Field Recovery Technique from Wigner Distribution Function" 27 : 2562-2574, 2019

      26 K. Aksit, "Near-Eye Varifocal Augmented Reality Display Using See-Through Screens" 36 : 2017

      27 Y. Kondo, "Narrowband Deep-Blue Organic Light-Emitting Diode Featuring an Organoboron-Based Emitter" 13 : 678-682, 2019

      28 A. Wilson, "Mutual Occlusion in Augmented Reality Displays"

      29 G. -Y. Lee, "Metasurface Eyepiece for Augmented Reality" 9 : 2018

      30 J. Kim, "Matching Prescription & Visual Acuity: Towards AR for Humans" 2019

      31 K. Aksit, "Manufacturing Application-Driven Foveated Near-Eye Displays" 25 : 1928-1939, 2019

      32 S. J. Robbins, "MEMS Laser Scanner Having Enlarged Fov"

      33 Y. Itoh, "Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering" 25 : 1951-1960, 2019

      34 T. Yamada, "Latest Development of Soluble-OLED Material and its Application to Mid- to Large-Sized Panel Production" IEEE

      35 S. Y. Yeo, "Invited Towards Commercialization of Hyperfluorescence" 2019

      36 Y. Sun, "Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes" 13 : 11433-11442, 2019

      37 P. -Y. Chou, "Hybrid Light Field Head-Mounted Display Using Time-Multiplexed Liquid Crystal Lens Array for Resolution Enhancement" 27 : 1164-1177, 2019

      38 B. Wheelwright, "Hybrid Fresnel Lens with Reduced Artifacts"

      39 N. Padmanaban, "Holographic Near-Eye Displays Based on Overlap-Add Stereograms" 38 : 2019

      40 W. Cao, "Highly Stable QLEDs with Improved Hole Injection via Quantum Dot Structure Tailoring" 9 : 2608-, 2018

      41 Y. H. Won, "Highly Efficient and Stable InP/ZnSe/ZnS Quantum Dot Light-Emitting Diodes" 575 : 634-638, 2019

      42 T. Lee, "Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer" 15 : 1905162-, 2019

      43 R. Furue, "Highly Efficient Red–Orange Delayed Fluorescence Emitters Based on Strong π-Accepting Dibenzophenazine andDibenzoquinoxalineCores: toward a Rational Pure-Red OLED Design" 6 : 1701147-, 2018

      44 J. Lim, "Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeSQuantumDots" 7 : 9019-9026, 2013

      45 D. H. Ahn, "Highly Efficient Blue Thermally Activated Delayed Fluorescence Emitters Based on Symmetrical and Rigid Oxygen-Bridged Boron Acceptors" 13 : 540-546, 2019

      46 X. Hu, "High-Resolution Optical See-Through Multi-Focal-Plane Head-Mounted Display Using Freeform Optics" 22 : 13896-13903, 2014

      47 K. S. Cho, "High-Performance Crosslinked Colloidal Quantum-Dot Light-Emitting Diodes" 3 : 341-345, 2009

      48 H. Shen, "High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes" 15 : 1211-1216, 2015

      49 Y. L. Zhang, "High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter" 31 : 1902368-, 2019

      50 J. H. Jo, "High-Efficiency Red Electroluminescent Device Based on Multishelled InP Quantum Dots" 41 : 3984-3987, 2016

      51 Y. Yang, "High-Efficiency Light-Emitting Devices Based on Quantum Dots with Tailored Nanostructures" 9 : 259-266, 2015

      52 H. Zhang, "High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots" 7 : 1801602-, 2019

      53 J. R. Manders, "High Efficiency and Ultra-Wide Color Gamut Quantum Dot LEDs for Next Generation Displays" 23 : 523-528, 2015

      54 T. H. Kim, "Full-Colour Quantum Dot Displays Fabricated by Transfer Printing" 5 : 176-182, 2011

      55 C. Jiang, "Full-Color Quantum Dots Active Matrix Display Fabricated by Ink-Jet Printing" 60 : 1349-1355, 2017

      56 Y. -G. Ju, "Foveated Computer-Generated Hologram and Its Progressive Update Using Triangular Mesh Scene Model for Near-Eye Displays" 27 : 23725-23738, 2019

      57 J. Kim, "Foveated AR:Dynamically-Foveated Augmented Reality Display" 38 : 2019

      58 J. Xiong, "Four-Plane Near-Eye Display without Sacrificing the Frame Rate" 50 : 620-623, 2019

      59 L. Wei, "Fast Calculation Method with Foveated Rendering for Computer-GeneratedHolograms Using an Angle Changeable Ray-Tracing Method" 58 : A258-A266, 2019

      60 Z. Li, "Efficient and Long-Life Green Light-Emitting Diodes Comprising Tridentate Thiol Capped Quantum Dots" 11 : 1600227-, 2017

      61 H. Moon, "Efficiency Enhancement of All-Solution-Processed Inverted-Structure Green Quantum Dot Light-Emitting Diodes via Partial Ligand Exchange with Thiophenol Derivatives Having Negative Dipole Moment" 8 : 1901314-, 2020

      62 C. Yoo, "Dual-Focal Waveguide See-Through Near-Eye Display with Polarization-Dependent Lenses" 44 : 1920-1923, 2019

      63 R. R. Hainich, "Displays Fundamentals & Applications" CRC Press 2011

      64 J. D. Waldern, "DigiLens Switchable Bragg Grating Waveguide Optics for Augmented Reality Applications" 10676 : 106760G-, 2018

      65 A. Wilson, "Design and Demonstration of a Vari-Focal Optical See-Through Head-Mounted Display Using Freeform Alvarez Lenses" 27 : 15627-15637, 2019

      66 H. Shin, "Controlling Horizontal Dipole OrientationandEmissionSpectrumof IRComplexesbyChemical Design of Ancillary Ligands for Efficient Deep-Blue Organic Light-Emitting Diodes" 31 : 1808102-, 2019

      67 H. Moon, "Composition-Tailored ZnMgO Nanoparticles for Electron Transport Layers of Highly Efficient and Bright InP-Based Quantum Dot Light Emitting Diodes" 55 : 13299-13302, 2019

      68 H. C. Wang, "Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2" 13 : 1603962-, 2017

      69 J. Kwak, "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure" 12 : 2362-2366, 2012

      70 X. Li, "Bright Colloidal Quantum Dot Light-Emitting Diodes Enabled by Efficient Chlorination" 12 : 159-164, 2018

      71 L. Wang, "Blue Quantum Dot Light-EmittingDiodeswithHigh Electroluminescent Efficiency" 9 : 38755-38760, 2017

      72 D. Li, "Blue Quantum Dot Light-Emitting Diodes with High Luminance by Improving the Charge Transfer Balance" 55 : 3501-3504, 2019

      73 D. Zhang, "Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with ThermallyActivatedDelayed Fluorescent Sensitizers" 30 : 1705250-, 2018

      74 S. Moon, "Augmented Reality Near-Eye Display Using Pancharatnam-Berry Phase Lenses" 9 : 2019

      75 K. Kiyokawa, "An Optical See-Through Display for Mutual Occlusion of Real and Virtual environments" 60-67, 2000

      76 A. D. Hwang, "An Augmented-Reality Edge Enhancement Application for Google Glass" 91 : 1021-1030, 2014

      77 Z. Yang, "All-Solution Processed Inverted Green Quantum Dot Light-Emitting Diodes with Concurrent High Efficiency and Long Lifetime" 6 : 2009-2015, 2019

      78 Mina Jung, "A bipolar host based high triplet energy electroplex for an over 10 000 h lifetime in pure blue phosphorescent organic light-emitting diodes" Royal Society of Chemistry (RSC) 7 (7): 559-565, 2020

      79 F. Cao, "A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes" 30 : 8002-8007, 2018

      80 Z. Zhang, "A Full-Color Compact 3D See-Through Near-Eye Display System Based on Complex Amplitude Modulation" 27 : 7023-7035, 2019

      81 J. Adachi, "A Disruptive Technology, Changes the OLED Displays" 104 : 2018

      82 J. Kim, "80-2: AMQLED Display with Solution-Processed Oxide TFT Backplane" 49 : 1080-1083, 2018

      83 Y. Li, "80-1: Invited Paper: Developing AMQLED Technology for Display Applications" 49 : 1076-1079, 2018

      84 T. Masuda, "6-3: Distinguished Paper: Highly Efficient Fluorescent Blue Materials and Their Applications for Top Emission OLEDs" 49 : 52-55, 2018

      85 B.C. Kress, "3D Holographic Head Mounted Display Using Holographic Optical Elements with AstigmatismAberrationCompensation" 2017 : 103350K-, 2017

      86 T. Baumann, "33-3: TADF Emitter Selection for Deep-Blue Hyper-Fluorescent OLEDs" 50 : 466-469, 2019

      87 S. Coe-Sullivan, "12.2: Invited Paper: Quantum Dot Light Emitting Diods for Near-to-Eye and Direct View Display Applications" 42 : 135-138, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 유지 () KCI등재후보
      2007-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.32
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.25 0.21 0.625 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼