RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Implications of Anomalous Crustal Provinces for Venus' Resurfacing History

      한글로보기

      https://www.riss.kr/link?id=O118962042

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        2169-9097

      • Online ISSN

        2169-9100

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Current Venus tectonics suggests a stagnant lid mode of mantle convection. However, the planet is debated to enter an episodic regime after long quiescent periods, driven by resurfacing due to rapid subduction and global crustal recycling. Tessera reg...

      Current Venus tectonics suggests a stagnant lid mode of mantle convection. However, the planet is debated to enter an episodic regime after long quiescent periods, driven by resurfacing due to rapid subduction and global crustal recycling. Tessera regions that cover approximately 10% of Venus' surface appear to be strongly deformed, which suggests that they have survived at least the latest resurfacing event, although the composition and age of the tesserae are unknown. Based on mantle convection modeling, we studied the effects of anomalous crustal provinces (ACPs) on mantle dynamics and postoverturn lithospheric survival. As a hypothesis, we assume ACPs to be thick, compositionally anomalous, and rheologically strong units, similar to terrestrial cratons. We model Venus with a varying number of preimposed ACP units and differing lithospheric yield stress in 2‐D and 3‐D spherical geometry. The impact of ACPs on mantle dynamics and the survival of lithosphere is investigated by examining the thermal evolution, crustal thickness, and surface age distribution. We find that the number and timing of overturns are highly dependent on the yield stress and, to some degree, on the number and size of the preimposed ACPs. ACPs in particular affect the wavelength of convection and may foster the survival of lithosphere even of those portions not being part of an ACP. However, ACPs do not seem to be a good analog for tessera regions due to their exaggerated age and (likely) thickness, but—with appropriate density contrast—may be more useful representatives of Venus' highland plateaus.
      Plate tectonics shapes the Earth's surface but is currently probably not active on Venus. Instead, periods with a more mobile Venusian surface remain possible, in particular because the surface is rather young. Episodic resurfacing events—known as overturns—during which much of the surface is recycled into the planetary interior may explain this. However, about 10% of Venus' surface are covered by tesserae, strongly deformed and possibly older‐than‐average regions that may have survived overturns. The origin of such anomalous crustal provinces (ACPs) is unknown, but we hypothesize them to be similar to the cratonic keels of Earth's continental crust. We investigate how ACPs affect the interior dynamics and resurfacing history and whether they promote the (partial) survival of the surface during overturns. We find that both the presence of ACPs and the strength of the lithosphere alter the overturn frequency. ACPs affect the mantle flow pattern and facilitate survival of non‐ACP lithosphere and crust by shielding it from recycling during overturn events. After analyzing our model‐predicted distributions of crustal thickness and surface age, however, preexisting ACPs do not seem to be adequate analogues for Venus' tesserae, as their thickness and age appear exaggerated given the observation on Venus' surface.


      Yield stress and the presence of ACPs alter the frequency of overturn events
      Survival of crustal material during overturn events changes with the presence of ACPs
      ACPs do not seem to be a good representation for Venus' tesserae regions

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼