1 S. Rosset , J. Zhu , T. Hastie ,, "Margin maximizing loss functions", vol . 16, 2003
2 A. K. Jain, "Data clustering : 50 years beyond K-means", vol . 31 , no . 8 , pp . 651-666, 2010
3 J. C. Bezdek , R. Ehrlich , W. Full, "FCM : The fuzzy c-means clustering algorithm", vol . 10 , no . 2-3 , pp . 191-203, 1984
4 T. C. Havens , J. C. Bezdek , C. Leckie , L. O . Hall , M. Palaniswami ,, "Fuzzy c-means algorithms for very large data", vol . 20 , no . 6 , pp . 1130-1146, 2012
5 D. E. Rumelhart , G. E. Hinton , and R. J. Williams, "Learning representations by back-propagating errors", vol . 323 , pp . 533-536, 1986
6 W. S. McCulloch , and W. H. Pitts ,, "A logical calculus of ideas immanent in nervous activity", vol . 5 , No . 4 , pp . 115-133 ,, 1943
7 P. D ’ Urso , P. Giordani ,, "A weighted fuzzy c-means clustering model for fuzzy data", vol . 50 , no . 6 , pp . 1496-1523, 2006
8 E.-H. Kim , S.-K. Oh , W. Pedrycz, "Reinforced rule-based fuzzy models : Design and analysis", vol . 119 , pp . 44-58, 2017
9 S.-K. Oh , W. Pedrycz , B.-J . Park, "Polynomial neural networks architecture : analysis and design", vol . 29 , no . 6 , pp . 703-725, 2003
10 T. M. Kodinariya , P. R. Makwana ,, "Review on determining number of Cluster in K-Means Clustering", vol . 1 , no . 6 , pp . 90-95, 2013
1 S. Rosset , J. Zhu , T. Hastie ,, "Margin maximizing loss functions", vol . 16, 2003
2 A. K. Jain, "Data clustering : 50 years beyond K-means", vol . 31 , no . 8 , pp . 651-666, 2010
3 J. C. Bezdek , R. Ehrlich , W. Full, "FCM : The fuzzy c-means clustering algorithm", vol . 10 , no . 2-3 , pp . 191-203, 1984
4 T. C. Havens , J. C. Bezdek , C. Leckie , L. O . Hall , M. Palaniswami ,, "Fuzzy c-means algorithms for very large data", vol . 20 , no . 6 , pp . 1130-1146, 2012
5 D. E. Rumelhart , G. E. Hinton , and R. J. Williams, "Learning representations by back-propagating errors", vol . 323 , pp . 533-536, 1986
6 W. S. McCulloch , and W. H. Pitts ,, "A logical calculus of ideas immanent in nervous activity", vol . 5 , No . 4 , pp . 115-133 ,, 1943
7 P. D ’ Urso , P. Giordani ,, "A weighted fuzzy c-means clustering model for fuzzy data", vol . 50 , no . 6 , pp . 1496-1523, 2006
8 E.-H. Kim , S.-K. Oh , W. Pedrycz, "Reinforced rule-based fuzzy models : Design and analysis", vol . 119 , pp . 44-58, 2017
9 S.-K. Oh , W. Pedrycz , B.-J . Park, "Polynomial neural networks architecture : analysis and design", vol . 29 , no . 6 , pp . 703-725, 2003
10 T. M. Kodinariya , P. R. Makwana ,, "Review on determining number of Cluster in K-Means Clustering", vol . 1 , no . 6 , pp . 90-95, 2013
11 R. L. Iman , J. M. Davenport ,, "Approximations of the critical region of the fbietkan statistic", vol . 9 , no . 6 , pp . 571-595 ,, 1980
12 D. Q. Zeebaree , H. Haron , A. M. Abdulazeez , S. R. Zeebaree ,, "Combination of K-means clustering with Genetic Algorithm : A review", vol . 12 , no . 24 , pp . 14238-14245, 2017
13 D. de la Mata-Moya , M. P. Jarabo-Amores , M. Rosa-Zurera , J. C. N. Borge , F. Lopez-Ferreras ,, "Combining MLPs and RBFNNs to detect signals with unknown parameters", vol . 58 , no . 9 , pp . 2989-2995, 2009
14 M. J. Er , S. Wu , J. Lu , H. L. Toh, "Face recognition with radial basis function ( RBF ) neural networks", vol . 13 , no . 3 , pp . 697-710, 2002
15 S. Akkurt , G. Tayfur , S. Can ., "Fuzzy logic model for the prediction of cement compressive strength", vol . 34 , no . 8 , pp . 1429-1433, 2004
16 E.-H. Kim , S.-K. Oh , W. Pedrycz ,, "Design of reinforced interval type-2 fuzzy C-means-based fuzzy classifier", vol . 26 , no . 5 , pp . 3054-3068, 2017
17 U. Ruby , V. Yendapalli, "Binary cross entropy with deep learning technique for image classification", vol . 9 , no . 4 , pp . 5393-5397 ,, 2020
18 R. Sibson, "SLINKL : an optimally efficient algorithm for the singlelink cluster method", vol . 16 , no . 1 , pp . 30-34, 1973
19 X. Li , L. Yu , D. Chang , Z. Ma , J. Cao, "Dual cross-entropy loss for small-sample fine-grained vehical classification", vol . 68 , no . 5 , pp . 4204-4212, 2019
20 S. Akkurt , S. Ozdemir , G. Tayfur , B. Akyol, "The use of GA-ANNs in the modelling of compressive strength of cement mortar", vol . 33 , no . 7 , pp . 973-979, 2003
21 A. Alexandridis , H. Sarimveis , G. Bafas ,, "A new algorithm for online structure and parameter adaptation of RBF networks", vol . 16 , no . 7 , pp . 1003-1017, 2003
22 L. Zhu , F. L. Chung , S. Wang, "Generalized fuzzy c-means clustering algorithm with imporved fuzzy partitions", vol . 39 , no . 3 , pp . 578-591, 2009
23 N. B. Karayiannis, "Reformulated radial basis function neural networks trained by gradient descent", vol . 10 , no . 3 , pp . 657-671, 1999
24 Z. Zhang , M. Sabuncu, "Generalized cross entropy loss for training deep neural networks with noisy labels", vol . 31, 2018
25 P. Narkhede , A. N. Joseph Raj , V. Kumar , V. Karar , S. Poddar ,, "Least square estimation-based adaptive complimentary filter for attitude estimation", vol . 41 , no . 1 , pp . 235-245, 2019
26 M. Roux ,, "A comparative study of divisive and agglomerative hierarchical clustering algorithms", vol . 35 , no . 2 , pp . 345-366, 2018
27 M.-T. Nguyen , V.-H. Nguyen , S.-J . Yun , Y.-H. Kim, "Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear", vol . 11 , no . 5, 2018
28 Y. Ho , S. Wookey, "The real-world-weight cross-entropy loss function : Modeling the costs of mislabeling", vol . 8 , pp . 4806-4813, 2019
29 S.-B . Park , S.-B . Roh , S.-K. Oh , E.-K. Park , W.-Z . Choi, "Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm", vol . 26 , no . 2 , pp . 46-55, 2017
30 N. B. Karayiannis , M. M. Randolph-Gips, "On the construction and training of reformulated radial basis function neural networks", vol . 14 , no . 4 , pp . 835-846, 2003
31 H. Eskandary-Naddaf , R. Kazemi ,, "ANN prediction of cement mortar compressive strength , influence of cement strength class", vol . 138 , pp . 1-11, 2017
32 F. Rosenblatt, "The perceptron : a probabilistic model for information storage and organization in the brain", vol . 65 , no . 6 , pp . 386-408 ,, 1958
33 S.-B . Roh , S.-K. Oh ,, "Design of Radial Basis Function Neural Networks with the Aid of Expectation-Maximization Learning", vol . 30 , no . 1 , pp . 1-6 ,, 2020
34 E.-H. Kim , S.-K. Oh , H.-K. Kim, "Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier", vol . 65 , no . 9 , pp . 1541-1550, 2016
35 S.-B . Park , S.-K. Oh , H.-K. Kim ,, "Design of Softmax Function-based RBFNN Classifier Realized with the Aid of Optimized Fuzzy Transform", vol . 28 , no . 2 , pp . 99-106, 2018
36 X. Li , H. Tang , S. Mu , K. Song , R. Liu , G. Xu , Q. Li, "Partial discharge monitoring system for PD characteristics of typical defects in GIS using UHF method", pp . 625-628, 2012
37 E.-S. Nahm, "A Study on Fuzzy Control MEthod of Energy Saving for Activated Sludge Process in Sewage Treatment Plant", vol . 67 , no . 11 , m pp . 1477-1485, 2018
38 A. S. Bosman , A. Engelbrecht , M. Helbig ,, "Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions", vol . 400 , pp . 113-136 ,, 2020
39 G. Apostolikas , S. Tzafestas ,, "On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structureadaptation", vol . 63 , no . 1 , pp . 1-13, 2003
40 H. Han , X. Cui , Y . Fan , H. Qing, "Least squares support vector machine ( LS-SVM ) -based chiller fault diagnosis using falut indicative features", vol . 154 , pp . 540-547, 2019
41 M. Saridemir, "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", vol . 40 , no . 9 , pp . 920-927, 2009
42 B.-J . Park , W. Pedrycz , S.-K. Oh ,, "Polynomial-based radial basis function neural networks ( P-RBF NNs ) and their application to pattern classification", vol . 32 , no . 1 , pp . 27-46 ,, 2010
43 C.-J . Park , S.-K. Oh , J.-Y . Kim, "A Study on Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architecture", vol . 64 , no . 6 , pp . 900-911, 2015
44 M. Zhu , Y. Wen , W. Sun , B. Wu, "A Novel Adaptive Weighted Least Square Support Vector Regression Algorithm-Based Identification of the Ship Dynamic Model", vol . 7 , pp . 128910-128924, 2019
45 S.-K. Oh , W.-D. Kim , W. Pedrycz , B.-J . Park, "Polynomial-based radial basis function neural networks ( P-RBF NNs ) realized with the aid of particle swarm optimization", vol . 163 , no . 1 , pp . 54-77, 2011
46 E.-K. Park , K.-H. Park , W.-Z . Choi , S.-K. Kim, "Environmental Impact Assessment on Dismantling·Crushning·Sorting Process for Recycling of Used Small Household Appliances", vol . 25 , no . 2 , pp . 17-24, 2016
47 S.-K. Oh , W.-D. Kim , W. Pedrycz, "Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques : design and analysis", vol . 45 , no . 4 , pp . 434-454, 2016
48 A. Datta , M. J. Augustin , N. Gupta , S. R. Viswamurthy , K. M. Gaddikeri , R. Sundaram ,, "Impact localization and severity estimation on composite structure using fiber bragg grating sensors by least square support vector regression", vol . 19 , no . 12 , pp . 4463-4470, 2019
49 S.-B . Roh , S.-K. Oh , W. Pedrycz , K. Seo , Z. Fu ,, "Design methodology for radial basis function neural networks classifier based on locally linear reconstruction and conditional fuzzy C-means clustering", vol . 106 , pp . 228-243, 2019
50 S.-B . Roh , S.-K. Oh , W. Pedrycz ,, "Identification of black plastics based on fuzzy RBF neural networks : Focused on data preprocessing techniques through Fourier transform infrared radiation", vol . 14 , no . 5 , pp . 1802-1813, 2017
51 B.-J . Jeong , S.-K. Oh, "Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture", vol . 67 , no . 1 , pp . 114-123, 2018
52 S.-K. Oh , W.-D. Kim , W. Pedrycz , S.-C. Joo ,, "Design of K-means clustering-based polynomial radial basis function neural networks ( pRBF NNs ) realized with the aid of particle swarm optimization and defferential evolution", vol . 78 , no . 1 , pp . 121-132, 2012
53 J.-S. Bae , S.-K. Oh , W. Pedrycz , Z. Fu ,, "Design of fuzzy radial basis function neural network classifier based on information data preprocessing for recycling black plastic wastes : comparative studies of ATR FT-IR and Raman spectroscopy", vol . 49 , no . 3 , pp . 929-949, 2019
54 F. Modaresi , S. Araghinejad , K. Ebrahimi ,, "A comparative assessment of artificial neural network , generalized regression neural network , least-square support vector regression , and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions", vol . 32 , no . 1 , pp . 243-258, 2018