RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      새로운 학습 방법을 적용한 방사형 기저 함수 신경회로망 설계에 관한 연구 : 예측 모델 및 패턴분류기의 성능 개선을 중심으로 = A Study on the Design of Radial Basis Function Neural Networks Applied with the Aid of a Novel Learning Method: Focused on Improvement of Performance of Prediction Model and Pattern Classifier

      한글로보기

      https://www.riss.kr/link?id=T16533440

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this thesis, a radial basis function neural networks(RBFNNs) prediction model and pattern classifier designed with the aid of a novel learning method are proposed. The objective of this study is focused on the improvement of performance of the existing RBFNNs model by indroducing a new learning methods. In the case of the existing RBFNNs, outlier and noisy data included in dataset and the location of RBFs over the input space may be closely related to the performance. Based on these contents, two kinds of learning methods are proposed and brief explanation of the proposed learning method is enumerated as follows:
      1) In the proposed prediction model and pattern classifier, the weighted FCM clustering is iteratively used for refinement of center point of each cluster. Clustering method is used to determine the center points over the input space by anaylzing the distribution of data patterns. The center points determined through the clustering method can be considered as the location of RBFs. In this study, conventional clustering method is used to initilize RBFs and then weighted FCM clustering driven with the aid of an auxiliary information is iteratively used for refinement of the locations of RBFs. Auxiliary information to be used of the weighted FCM can be obtained through sigmoid function and cross-entropy error function. Through this iterative refinement process of the location of RBFs, the performance of RBFNNs may be improved.
      2) In order to trrain coefficients of connection weights between the hidden layer and output layer of the proposed prediction model and pattern classifier, margin-maximization is applied. Margin-maximization is a mechanism used to enhance the generalization ability of support vector machine(SVM) by maximizing distance from hyperplane to the nearest data pattern. Through the margin-maximization, weights each of data patterns can be obtained and then utilized to train the coefficients of connection weights. In this study, margin-maximization technique applied to least-square version of SVM(LS-SVM) is used. Since margin-maximization technique of original SVM should solve quadratic programming, lots of computational cost is consumed. Also, in regression problem, margin-maximization technique of general SVM cannot be applied. In contrast, margin-maximization technique of LS-SVM applies the least squares method to calculate weights instead of solving the quadratic programming, so computational cost is lower than original SVM. LS-SVM solves problem by implementing a linear equation, so it can apply to classification problem as well as regression problem.
      From the viewpoint of performance improvement through the novel learning method, the proposed prediction model and pattern classifier are evaluated by using a variety of publicly available machine learning datasets and compared with a diverse of algorithms which realized to WEKA toolkt. In addition, the Friedman test is applied for statistical analysis of the proposed prediction model and pattern classifier. Furthermore, some practical application datasets such as the actifvated sludge process datasets, Portland cement datasets, plastic wastes datasets, and partial discharge datasets are also used to evaluate the performance.
      번역하기

      In this thesis, a radial basis function neural networks(RBFNNs) prediction model and pattern classifier designed with the aid of a novel learning method are proposed. The objective of this study is focused on the improvement of performance of the exis...

      In this thesis, a radial basis function neural networks(RBFNNs) prediction model and pattern classifier designed with the aid of a novel learning method are proposed. The objective of this study is focused on the improvement of performance of the existing RBFNNs model by indroducing a new learning methods. In the case of the existing RBFNNs, outlier and noisy data included in dataset and the location of RBFs over the input space may be closely related to the performance. Based on these contents, two kinds of learning methods are proposed and brief explanation of the proposed learning method is enumerated as follows:
      1) In the proposed prediction model and pattern classifier, the weighted FCM clustering is iteratively used for refinement of center point of each cluster. Clustering method is used to determine the center points over the input space by anaylzing the distribution of data patterns. The center points determined through the clustering method can be considered as the location of RBFs. In this study, conventional clustering method is used to initilize RBFs and then weighted FCM clustering driven with the aid of an auxiliary information is iteratively used for refinement of the locations of RBFs. Auxiliary information to be used of the weighted FCM can be obtained through sigmoid function and cross-entropy error function. Through this iterative refinement process of the location of RBFs, the performance of RBFNNs may be improved.
      2) In order to trrain coefficients of connection weights between the hidden layer and output layer of the proposed prediction model and pattern classifier, margin-maximization is applied. Margin-maximization is a mechanism used to enhance the generalization ability of support vector machine(SVM) by maximizing distance from hyperplane to the nearest data pattern. Through the margin-maximization, weights each of data patterns can be obtained and then utilized to train the coefficients of connection weights. In this study, margin-maximization technique applied to least-square version of SVM(LS-SVM) is used. Since margin-maximization technique of original SVM should solve quadratic programming, lots of computational cost is consumed. Also, in regression problem, margin-maximization technique of general SVM cannot be applied. In contrast, margin-maximization technique of LS-SVM applies the least squares method to calculate weights instead of solving the quadratic programming, so computational cost is lower than original SVM. LS-SVM solves problem by implementing a linear equation, so it can apply to classification problem as well as regression problem.
      From the viewpoint of performance improvement through the novel learning method, the proposed prediction model and pattern classifier are evaluated by using a variety of publicly available machine learning datasets and compared with a diverse of algorithms which realized to WEKA toolkt. In addition, the Friedman test is applied for statistical analysis of the proposed prediction model and pattern classifier. Furthermore, some practical application datasets such as the actifvated sludge process datasets, Portland cement datasets, plastic wastes datasets, and partial discharge datasets are also used to evaluate the performance.

      더보기

      목차 (Table of Contents)

      • Ⅰ. 서 론 1
      • 1. 연 구 목 적 1
      • 1) 연구 가설 3
      • 2) 연구의 독창성 4
      • 2. 연 구 내 용 5
      • Ⅰ. 서 론 1
      • 1. 연 구 목 적 1
      • 1) 연구 가설 3
      • 2) 연구의 독창성 4
      • 2. 연 구 내 용 5
      • Ⅱ. 퍼지 클러스터링(FCM) 기반 방사형 기저 함수 신경회로망 8
      • 1. 네트워크의 구조 8
      • 2. 네트워크 학습을 위한 알고리즘 10
      • 1) FCM을 사용한 방사형 기저 함수의 위치 학습 10
      • 2) 최소 제곱 추정을 적용한 연결가중치의 계수 학습 12
      • Ⅲ. 가중 퍼지 클러스터링(Weighted FCM)을 사용한 방사형 기저 함수(RBF)의 위치 조정 14
      • 1. 데이터 패턴별 가중치 계산 14
      • 1) Sigmoid 함수를 사용한 가중치 계산 14
      • 2) Cross-entropy 오차 함수를 사용한 가중치 계산 15
      • 2. Weighted FCM을 사용한 RBF의 위치 조정 17
      • Ⅳ. 마진-최대화(Margin-Maximization) 기반 연결가중치의 계수 학습 20
      • 1. 예측 모델에서의 연결가중치의 계수 학습 21
      • 2. 패턴분류기에서의 연결가중치의 계수 학습 23
      • Ⅴ. Weighted FCM/Margin-Maximization을 사용한 방사형 기저 함수 신경회로망(RBFNN) 설계 27
      • 1. Regression을 위한 RBFNN 예측 모델 28
      • 2. Classification을 위한 RBFNN 패턴분류기 32
      • Ⅵ. 실험 및 결과 고찰 35
      • 1. Regression을 위한 RBFNN 예측 모델 37
      • 1) 평가 방법 37
      • 2) 단일 입력기반 synthetic dataset 38
      • 3) Publicly available regression dataset 44
      • 4) 실적용 데이터(1): Portland cement 데이터 54
      • 5) 실적용 데이터(2): 하수처리 데이터 57
      • 2. Classification을 위한 RBFNN 패턴분류기 60
      • 1) 평가 방법 60
      • 2) Synthetic spiral datase 61
      • 3) Publicly available classification dataset 64
      • 4) 실적용 데이터(1): 폐플라스틱 데이터 72
      • 5) 실적용 데이터(2): 부분방전 데이터 84
      • Ⅶ. 결 론 94
      • 1. 결 론 94
      • 2. 향후 연구과제 96
      • 참 고 문 헌 97
      • ABSTRACT 109
      더보기

      참고문헌 (Reference) 논문관계도

      1 S. Rosset , J. Zhu , T. Hastie ,, "Margin maximizing loss functions", vol . 16, 2003

      2 A. K. Jain, "Data clustering : 50 years beyond K-means", vol . 31 , no . 8 , pp . 651-666, 2010

      3 J. C. Bezdek , R. Ehrlich , W. Full, "FCM : The fuzzy c-means clustering algorithm", vol . 10 , no . 2-3 , pp . 191-203, 1984

      4 T. C. Havens , J. C. Bezdek , C. Leckie , L. O . Hall , M. Palaniswami ,, "Fuzzy c-means algorithms for very large data", vol . 20 , no . 6 , pp . 1130-1146, 2012

      5 D. E. Rumelhart , G. E. Hinton , and R. J. Williams, "Learning representations by back-propagating errors", vol . 323 , pp . 533-536, 1986

      6 W. S. McCulloch , and W. H. Pitts ,, "A logical calculus of ideas immanent in nervous activity", vol . 5 , No . 4 , pp . 115-133 ,, 1943

      7 P. D ’ Urso , P. Giordani ,, "A weighted fuzzy c-means clustering model for fuzzy data", vol . 50 , no . 6 , pp . 1496-1523, 2006

      8 E.-H. Kim , S.-K. Oh , W. Pedrycz, "Reinforced rule-based fuzzy models : Design and analysis", vol . 119 , pp . 44-58, 2017

      9 S.-K. Oh , W. Pedrycz , B.-J . Park, "Polynomial neural networks architecture : analysis and design", vol . 29 , no . 6 , pp . 703-725, 2003

      10 T. M. Kodinariya , P. R. Makwana ,, "Review on determining number of Cluster in K-Means Clustering", vol . 1 , no . 6 , pp . 90-95, 2013

      1 S. Rosset , J. Zhu , T. Hastie ,, "Margin maximizing loss functions", vol . 16, 2003

      2 A. K. Jain, "Data clustering : 50 years beyond K-means", vol . 31 , no . 8 , pp . 651-666, 2010

      3 J. C. Bezdek , R. Ehrlich , W. Full, "FCM : The fuzzy c-means clustering algorithm", vol . 10 , no . 2-3 , pp . 191-203, 1984

      4 T. C. Havens , J. C. Bezdek , C. Leckie , L. O . Hall , M. Palaniswami ,, "Fuzzy c-means algorithms for very large data", vol . 20 , no . 6 , pp . 1130-1146, 2012

      5 D. E. Rumelhart , G. E. Hinton , and R. J. Williams, "Learning representations by back-propagating errors", vol . 323 , pp . 533-536, 1986

      6 W. S. McCulloch , and W. H. Pitts ,, "A logical calculus of ideas immanent in nervous activity", vol . 5 , No . 4 , pp . 115-133 ,, 1943

      7 P. D ’ Urso , P. Giordani ,, "A weighted fuzzy c-means clustering model for fuzzy data", vol . 50 , no . 6 , pp . 1496-1523, 2006

      8 E.-H. Kim , S.-K. Oh , W. Pedrycz, "Reinforced rule-based fuzzy models : Design and analysis", vol . 119 , pp . 44-58, 2017

      9 S.-K. Oh , W. Pedrycz , B.-J . Park, "Polynomial neural networks architecture : analysis and design", vol . 29 , no . 6 , pp . 703-725, 2003

      10 T. M. Kodinariya , P. R. Makwana ,, "Review on determining number of Cluster in K-Means Clustering", vol . 1 , no . 6 , pp . 90-95, 2013

      11 R. L. Iman , J. M. Davenport ,, "Approximations of the critical region of the fbietkan statistic", vol . 9 , no . 6 , pp . 571-595 ,, 1980

      12 D. Q. Zeebaree , H. Haron , A. M. Abdulazeez , S. R. Zeebaree ,, "Combination of K-means clustering with Genetic Algorithm : A review", vol . 12 , no . 24 , pp . 14238-14245, 2017

      13 D. de la Mata-Moya , M. P. Jarabo-Amores , M. Rosa-Zurera , J. C. N. Borge , F. Lopez-Ferreras ,, "Combining MLPs and RBFNNs to detect signals with unknown parameters", vol . 58 , no . 9 , pp . 2989-2995, 2009

      14 M. J. Er , S. Wu , J. Lu , H. L. Toh, "Face recognition with radial basis function ( RBF ) neural networks", vol . 13 , no . 3 , pp . 697-710, 2002

      15 S. Akkurt , G. Tayfur , S. Can ., "Fuzzy logic model for the prediction of cement compressive strength", vol . 34 , no . 8 , pp . 1429-1433, 2004

      16 E.-H. Kim , S.-K. Oh , W. Pedrycz ,, "Design of reinforced interval type-2 fuzzy C-means-based fuzzy classifier", vol . 26 , no . 5 , pp . 3054-3068, 2017

      17 U. Ruby , V. Yendapalli, "Binary cross entropy with deep learning technique for image classification", vol . 9 , no . 4 , pp . 5393-5397 ,, 2020

      18 R. Sibson, "SLINKL : an optimally efficient algorithm for the singlelink cluster method", vol . 16 , no . 1 , pp . 30-34, 1973

      19 X. Li , L. Yu , D. Chang , Z. Ma , J. Cao, "Dual cross-entropy loss for small-sample fine-grained vehical classification", vol . 68 , no . 5 , pp . 4204-4212, 2019

      20 S. Akkurt , S. Ozdemir , G. Tayfur , B. Akyol, "The use of GA-ANNs in the modelling of compressive strength of cement mortar", vol . 33 , no . 7 , pp . 973-979, 2003

      21 A. Alexandridis , H. Sarimveis , G. Bafas ,, "A new algorithm for online structure and parameter adaptation of RBF networks", vol . 16 , no . 7 , pp . 1003-1017, 2003

      22 L. Zhu , F. L. Chung , S. Wang, "Generalized fuzzy c-means clustering algorithm with imporved fuzzy partitions", vol . 39 , no . 3 , pp . 578-591, 2009

      23 N. B. Karayiannis, "Reformulated radial basis function neural networks trained by gradient descent", vol . 10 , no . 3 , pp . 657-671, 1999

      24 Z. Zhang , M. Sabuncu, "Generalized cross entropy loss for training deep neural networks with noisy labels", vol . 31, 2018

      25 P. Narkhede , A. N. Joseph Raj , V. Kumar , V. Karar , S. Poddar ,, "Least square estimation-based adaptive complimentary filter for attitude estimation", vol . 41 , no . 1 , pp . 235-245, 2019

      26 M. Roux ,, "A comparative study of divisive and agglomerative hierarchical clustering algorithms", vol . 35 , no . 2 , pp . 345-366, 2018

      27 M.-T. Nguyen , V.-H. Nguyen , S.-J . Yun , Y.-H. Kim, "Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear", vol . 11 , no . 5, 2018

      28 Y. Ho , S. Wookey, "The real-world-weight cross-entropy loss function : Modeling the costs of mislabeling", vol . 8 , pp . 4806-4813, 2019

      29 S.-B . Park , S.-B . Roh , S.-K. Oh , E.-K. Park , W.-Z . Choi, "Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm", vol . 26 , no . 2 , pp . 46-55, 2017

      30 N. B. Karayiannis , M. M. Randolph-Gips, "On the construction and training of reformulated radial basis function neural networks", vol . 14 , no . 4 , pp . 835-846, 2003

      31 H. Eskandary-Naddaf , R. Kazemi ,, "ANN prediction of cement mortar compressive strength , influence of cement strength class", vol . 138 , pp . 1-11, 2017

      32 F. Rosenblatt, "The perceptron : a probabilistic model for information storage and organization in the brain", vol . 65 , no . 6 , pp . 386-408 ,, 1958

      33 S.-B . Roh , S.-K. Oh ,, "Design of Radial Basis Function Neural Networks with the Aid of Expectation-Maximization Learning", vol . 30 , no . 1 , pp . 1-6 ,, 2020

      34 E.-H. Kim , S.-K. Oh , H.-K. Kim, "Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier", vol . 65 , no . 9 , pp . 1541-1550, 2016

      35 S.-B . Park , S.-K. Oh , H.-K. Kim ,, "Design of Softmax Function-based RBFNN Classifier Realized with the Aid of Optimized Fuzzy Transform", vol . 28 , no . 2 , pp . 99-106, 2018

      36 X. Li , H. Tang , S. Mu , K. Song , R. Liu , G. Xu , Q. Li, "Partial discharge monitoring system for PD characteristics of typical defects in GIS using UHF method", pp . 625-628, 2012

      37 E.-S. Nahm, "A Study on Fuzzy Control MEthod of Energy Saving for Activated Sludge Process in Sewage Treatment Plant", vol . 67 , no . 11 , m pp . 1477-1485, 2018

      38 A. S. Bosman , A. Engelbrecht , M. Helbig ,, "Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions", vol . 400 , pp . 113-136 ,, 2020

      39 G. Apostolikas , S. Tzafestas ,, "On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structureadaptation", vol . 63 , no . 1 , pp . 1-13, 2003

      40 H. Han , X. Cui , Y . Fan , H. Qing, "Least squares support vector machine ( LS-SVM ) -based chiller fault diagnosis using falut indicative features", vol . 154 , pp . 540-547, 2019

      41 M. Saridemir, "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", vol . 40 , no . 9 , pp . 920-927, 2009

      42 B.-J . Park , W. Pedrycz , S.-K. Oh ,, "Polynomial-based radial basis function neural networks ( P-RBF NNs ) and their application to pattern classification", vol . 32 , no . 1 , pp . 27-46 ,, 2010

      43 C.-J . Park , S.-K. Oh , J.-Y . Kim, "A Study on Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architecture", vol . 64 , no . 6 , pp . 900-911, 2015

      44 M. Zhu , Y. Wen , W. Sun , B. Wu, "A Novel Adaptive Weighted Least Square Support Vector Regression Algorithm-Based Identification of the Ship Dynamic Model", vol . 7 , pp . 128910-128924, 2019

      45 S.-K. Oh , W.-D. Kim , W. Pedrycz , B.-J . Park, "Polynomial-based radial basis function neural networks ( P-RBF NNs ) realized with the aid of particle swarm optimization", vol . 163 , no . 1 , pp . 54-77, 2011

      46 E.-K. Park , K.-H. Park , W.-Z . Choi , S.-K. Kim, "Environmental Impact Assessment on Dismantling·Crushning·Sorting Process for Recycling of Used Small Household Appliances", vol . 25 , no . 2 , pp . 17-24, 2016

      47 S.-K. Oh , W.-D. Kim , W. Pedrycz, "Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques : design and analysis", vol . 45 , no . 4 , pp . 434-454, 2016

      48 A. Datta , M. J. Augustin , N. Gupta , S. R. Viswamurthy , K. M. Gaddikeri , R. Sundaram ,, "Impact localization and severity estimation on composite structure using fiber bragg grating sensors by least square support vector regression", vol . 19 , no . 12 , pp . 4463-4470, 2019

      49 S.-B . Roh , S.-K. Oh , W. Pedrycz , K. Seo , Z. Fu ,, "Design methodology for radial basis function neural networks classifier based on locally linear reconstruction and conditional fuzzy C-means clustering", vol . 106 , pp . 228-243, 2019

      50 S.-B . Roh , S.-K. Oh , W. Pedrycz ,, "Identification of black plastics based on fuzzy RBF neural networks : Focused on data preprocessing techniques through Fourier transform infrared radiation", vol . 14 , no . 5 , pp . 1802-1813, 2017

      51 B.-J . Jeong , S.-K. Oh, "Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture", vol . 67 , no . 1 , pp . 114-123, 2018

      52 S.-K. Oh , W.-D. Kim , W. Pedrycz , S.-C. Joo ,, "Design of K-means clustering-based polynomial radial basis function neural networks ( pRBF NNs ) realized with the aid of particle swarm optimization and defferential evolution", vol . 78 , no . 1 , pp . 121-132, 2012

      53 J.-S. Bae , S.-K. Oh , W. Pedrycz , Z. Fu ,, "Design of fuzzy radial basis function neural network classifier based on information data preprocessing for recycling black plastic wastes : comparative studies of ATR FT-IR and Raman spectroscopy", vol . 49 , no . 3 , pp . 929-949, 2019

      54 F. Modaresi , S. Araghinejad , K. Ebrahimi ,, "A comparative assessment of artificial neural network , generalized regression neural network , least-square support vector regression , and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions", vol . 32 , no . 1 , pp . 243-258, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼