<P>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current w...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107453390
-
2018
-
SCOPUS,SCIE
학술저널
1366-1373(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current w...
<P>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instruction execution model of GPUs, these prefetching target warps will certainly execute the same load as the current warp. Exploiting that, WASP prefetches the data for prefetching target warps, which allows the prefetched data to be accurately accessed. To simply verify the progress of the warps, WASP monitors the counts of the dynamic load executions for all warps. When a warp executes a load, WASP searches the warps with lower load execution counts than the current warp and generates the prefetch requests for them. In our evaluation, WASP achieves a 16.8 percent speedup compared to the baseline GPU.</P>