RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Determining Ideal Strength and Electronic Properties of Ge/Si Core-Shell Nanowires

      한글로보기

      https://www.riss.kr/link?id=A106310475

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Core/shell nanowire (NW) is recognized as promising one-dimensional material for nanoelectronic and nanoelectromechanical systems. However, its mechanical properties so important for engineering applications remain largely unexplored. Based on the den...

      Core/shell nanowire (NW) is recognized as promising one-dimensional material for nanoelectronic and nanoelectromechanical systems. However, its mechanical properties so important for engineering applications remain largely unexplored. Based on the density functional theory (DFT), we theoretically investigate mechanical and electronic properties of the Ge-core/Si-shell NWs along the [100] direction within the cross sectional size of 1.0 nm and 1.4 nm under the axial strain. Our results show that ideal strength of Ge-core/Si-shell NWs strongly depends on wire cross sectional size compared with that of the Si and Ge NWs. Ideal strength (maximum tensile strength) of Ge-core/Si-shell NWs increases significantly when increasing thickness of the Si-shell. We found that bond lengths around interfaces between the core and the shell play a predominant role in ideal strength of Ge-core/Si-shell NWs. Additionally, band structures of NWs are modififed by applying axial strain. Band gaps of NWs decrease with increasing strain. Our results provide important insight into intrinsic mechanical behavior and electronic properties of Ge-core/Si-shell NWs, useful for the design of nanodevices with Ge-core/Si-shell NWs in future applications.

      더보기

      참고문헌 (Reference)

      1 Zhao, Y., "Transport Modulation in Ge/Si Core/Shell Nanowires through Controlled Synthesis of Doped Si Shells" 11 (11): 1406-1411, 2011

      2 Liu, X. W., "The Composition-Dependent Mechanical Properties of Ge/Si Core–Shell Nanowires" 40 (40): 3042-3048, 2008

      3 Goldthorpe, I. A., "Synthesis and Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays" 8 (8): 4081-4086, 2008

      4 Logan, P., "Strain-Modulated Electronic Properties of Ge Nanowires : A First-Principles Study" 80 (80): 2009

      5 Liu, N., "Strain Effects in Ge/Si and Si/Ge Core/Shell Nanowires" 115 (115): 15739-15742, 2011

      6 Monkhorst, H. J., "Special Points for Brillouin-Zone Integrations" 13 (13): 5188-5192, 1976

      7 Das, S., "Simulation of Thermal Stress and Buckling Instability in Si/Ge and Ge/Si Core/Shell Nanowires" 6 (6): 1970-1977, 2015

      8 Musin, R. N., "Quantum Size Effect in Core-Shell Structured Silicon-Germanium Nanowires" 74 (74): 2006

      9 Giannozzi, P., "Quantum Espresso : A Modular and Open-Source Software Project for Quantum Simulations of Materials" 21 (21): 2009

      10 Perdew, J. P., "Perdew, Burke, and Ernzerhof Reply" 80 (80): 891-, 1998

      1 Zhao, Y., "Transport Modulation in Ge/Si Core/Shell Nanowires through Controlled Synthesis of Doped Si Shells" 11 (11): 1406-1411, 2011

      2 Liu, X. W., "The Composition-Dependent Mechanical Properties of Ge/Si Core–Shell Nanowires" 40 (40): 3042-3048, 2008

      3 Goldthorpe, I. A., "Synthesis and Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays" 8 (8): 4081-4086, 2008

      4 Logan, P., "Strain-Modulated Electronic Properties of Ge Nanowires : A First-Principles Study" 80 (80): 2009

      5 Liu, N., "Strain Effects in Ge/Si and Si/Ge Core/Shell Nanowires" 115 (115): 15739-15742, 2011

      6 Monkhorst, H. J., "Special Points for Brillouin-Zone Integrations" 13 (13): 5188-5192, 1976

      7 Das, S., "Simulation of Thermal Stress and Buckling Instability in Si/Ge and Ge/Si Core/Shell Nanowires" 6 (6): 1970-1977, 2015

      8 Musin, R. N., "Quantum Size Effect in Core-Shell Structured Silicon-Germanium Nanowires" 74 (74): 2006

      9 Giannozzi, P., "Quantum Espresso : A Modular and Open-Source Software Project for Quantum Simulations of Materials" 21 (21): 2009

      10 Perdew, J. P., "Perdew, Burke, and Ernzerhof Reply" 80 (80): 891-, 1998

      11 Rappe, A. M., "Optimized Pseudopotentials" 41 (41): 1227-1230, 1990

      12 Xia, Y., "One Dimensional Nanostructures : Synthesis, Characterization, and Applications" 15 (15): 353-389, 2003

      13 Peng, X., "Nanowires-Fundamental Research" InTech 2011

      14 Yan, R., "Nanowire Photonics" 3 (3): 569-576, 2009

      15 Wan, Y., "Nanodevices based on Silicon Nanowires" 3 (3): 1-9, 2009

      16 Lee, A. J., "Mechanical and Electronic Properties of Strained Ge Nanowires Using ab Initio Real-Space Pseudopotentials" 86 (86): 2012

      17 Zhu, Y., "Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires" 9 (9): 3934-3939, 2009

      18 Kizuka, T., "Measurements of the Atomistic Mechanics of Single Crystalline Silicon Wires of Nanometer Width" 72 (72): 2005

      19 Hung, N. T., "Intrinsic Strength and Failure Behaviors of Ultra-Small Single-Walled Carbon Nanotubes" 114 : 167-171, 2016

      20 Goldthorpe, I. A., "Inhibiting Strain-Induced Surface Roughening : Dislocation-Free Ge/Si and Ge/Sige Core-Shell Nanowires" 9 (9): 3715-3719, 2009

      21 Xiang, J., "Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors" 441 (441): 489-493, 2006

      22 Lee, B., "First-Principles Study of the Young’s Modulus of Si<001> Nanowires" 75 (75): 2007

      23 Lauhon, L. J., "Epitaxial Core–Shell and Core–Multishell Nanowire Heterostructures" 420 (420): 57-61, 2002

      24 Fukata, N., "Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core–Shell Nanowires" 6 (6): 8887-8895, 2012

      25 Kang, K., "Brittle and Ductile Fracture of Semiconductor Nanowires–Molecular Dynamics Simulations" 87 (87): 2169-2189, 2007

      26 Varahramyan, K. M., "Band Engineered Epitaxial Ge–Six Ge1–x Core-Shell Nanowire Heterostructures" 95 (95): 2009

      27 Hung, N. T., "Ab initio Study of Structural Transition and Pseudoelasticity in Cu Nanowires" 641 : 1-5, 2015

      28 Leu, P. W., "Ab initio Calculations of the Mechanical and Electronic Properties of Strained Si Nanowires" 77 (77): 2008

      29 Morales, A. M., "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires" 279 (279): 208-211, 1998

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-07-07 학술지명변경 외국어명 : 미등록 -> Journal of the Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.26 0.26 0.26
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.449 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼